SHARP SERVICE MANUAL

CODE: 00ZFO145A/SME

FACSIMILE

model FO-145

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications . 1-1
[2] Operation Panel . 1-2
[3] Transmittable Documents1-3
[4] Installation . 1-4
[5] Quick reference guide 1-6
CHAPTER 2. ADJUSTMENTS
[1] Adjustments . 2-1
[2] Diagnostics and service soft switch2-2
[3] Troubleshooting 2-11
[4] Error code table2-12
CHAPTER 3. MECHANISM BLOCKS
[1] General description 3-1
[2] Disassembly and assembly
procedures 3-4
CHAPTER 4. DIAGRAMS
[1] Block diagram . 4-1
[2] Wiring diagram 4-2
[3] Point-to-point diagram 4-3

CHAPTER 5. CIRCUIT DESCRIPTION
[1] Circuit description 5-1
[2] Circuit description of control PWB5-2
[3] Circuit description of TEL/LIU PWB ...5-11
[4] Circuit description of power Supply PWB 5-15
[5] Circuit description of CCD PWB 5-17
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT
[1] Control PWB circuit 6-1
[2] TEL/LIU PWB circuit 6-7
[3] Power supply PWB circuit 6-10
[4] CCD PWB circuit 6-12
[5] Operation panel PWB circuit 6-13
[6] LCD PWB circuit 6-14
CHAPTER 7. OPERATION FLOWCHART
[1] Protocol 7-1
[2] Power on sequence 7-2
CHAPTER 8. OTHERS
[1] Service tools 8-1
[2] IC signal name 8-4
PARTS GUIDE

[^0]
CAUTION FOR BATTERY REPLACEMENT

(Danish)
ADVARSEL!
Lithiumbatteri-Eksplosionsfare ved fejlagtig håndtering.
Udskiftning má kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandoren.
(English)
Caution!
Danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended ty the equipment manufacturer.
Discard used batteries according to manufacturer's instructions.
(Finnish) VAROITUS
Paristo voi răjähtää, jos se on virheellisesti asennettu.
Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.
(French) ATTENTION
Il y a danger d'explosion s' il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommandé par le constructeur.
Mettre au rébut les batteries usagées conformément aux instructions du fabricant.
(Swedish) VARNING
Explosionsfare vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

CHAPTER 1. GENERAL DESCRIPTION

[1] SPECIFICATIONS

Applicable telephone line:	Public switched telephone network
Compatibility:	ITU-T (CCITT) G3 mode
Configuration:	Half-duplex, desktop transceiver
Compression scheme:	Modified Huffman and Sharp special mode
Scanning method:	Flat-bed, solid-state CCD
Resolution:	Horizontal: 8 lines/mm Vertical: Standard - $\quad 3.85$ lines $/ \mathrm{mm}$ Fine/Halftone - 7.7 lines $/ \mathrm{mm}$
Recording system:	Thermal recording
Display:	7×5 dots, 1 line by 16 -digit display
Reception modes:	Auto/Manual/Answering machine
Modem speed:	9600 bps with automatic fallback to 7200,4800 , or 2400 bps
Transmission time*	Approx. 15 seconds (Sharp special mode)
Effective recording width:	210 mm , max.
Input document size:	Automatic feeding: Width - 148 to 216 mm Length - 128 to 297 mm
	Manual feeding: Width - 148 to 216 mm Length - 128 to 1000 mm

Effective scanning width:	210 mm , max.
Automatic document feeder:	18 sheets max.
Halftone (gray scale):	32 levels
Contrast control:	Automatic/Dark selectable
Copy function:	Standard
Telephone function:	Standard (cannot be used if power fails)
Power requirements:	$230-240 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
Operating temperature:	5 to $35^{\circ} \mathrm{C}$
Power consumption:	Stand-by: 7 W
	Transmission: 15 W
	Reception: 22 W
	Copy: 25 W
	maximum: 120 W
Dimensions:	Width: 353 mm
	Depth: 259 mm
	Height: 122 mm
Weight:	Approx. 3.7 kg

* Based on ITU-T (CCITT) Test Chart \#1 at standard resolution in Sharp special mode, excluding time for protocol signais (i.e., ITU-T phase C time only).

As a part of our policy of continuous improvement, SHARP reserves the right to make design and specification changes for procduct improvement without prior notice. The performance specifications figures indicated are nominal values of production units. There may be some deviation from these values in individual units.

[2] Operation Panel

Liquid crystal display

This displays various messages during operation and programming.

RESOLUTION key

Press this key to adjust the resolution and contrast before sending or copying a document.

FUNCTION key

Press this key to select various special functions.

SPEED DIAL key
Press this key to dial a 2-digit. Speed Dial number.

REDIAL key
Press this key to automatically redial the last number dialed.

[3] Transmittable Documents

1. Document Sizes

Normal size	Width	$148-216 \mathrm{~mm}$
	Length	$128-297 \mathrm{~mm}$

** Use document carrier sheet for smaller documents.

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.

2. Paper Thickness \& Weight

Normal size	ADF 10 sheets	Thickness	$0.06-0.12 \mathrm{~mm}$
		Weight	$\begin{aligned} & 52-104 \mathrm{~g} / \mathrm{m}^{2} \\ & (14-28 \mathrm{lbs}) \end{aligned}$
	ADF 18 sheets	Thickness	$0.06-0.09 \mathrm{~mm}$
		Weight	$\begin{aligned} & 52-74.3 \mathrm{~g} / \mathrm{m}^{2} \\ & (14-20 \mathrm{lbs}) \end{aligned}$
Special size		Thickness	$0.12-0.20 \mathrm{~mm}$
		Weight	$52-157 \mathrm{~g} / \mathrm{m}^{2}$

3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball-point pen, or felt-tipped pen can be transmitted.
Documents of normal contrast duplicated by a copying machine can also be transmitted.

- Diazo copy (blue print)

Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink, glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.

5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:
Normal size: max. ADF 18 sheets
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder.

If force is used, double-feeding or a document jam may result.

6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.

Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width

210 mm, max.

- Readable length

This is the length of the document sent minus 4 mm from the top and bottom edges.

7. Use of Document Carrier Sheet

A document carrier sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $148 \mathrm{~mm}(\mathrm{~W}) \times 128 \mathrm{~mm}(\mathrm{~L})$
- Carbon-backed documents

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracing paper written on with a soft, heavy lead pencil).
NOTES: - When using the document carrier, carefully read the instructions written on the back.
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.

[4] Installation

1. Site selection

Take the following points into consideration when selecting a site for this model.

ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine.

In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.

- The temperature should be between 5° and $35^{\circ} \mathrm{C}$.
- The humidity should be between 30% and 85% (without condensation).

ELECTRICITY

$230-240 \mathrm{~V}, 50 \mathrm{~Hz}$, grounded AC outlet is required.

Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone specialty stores.

If the machine is moved from a coid to a warm place...

If the machine is moved from a cold to a warm place, it is possible that the reading glass may fog up, preventing proper scanning of documents for transmission. To remove the fog, turn on the power and wait approximately 2 hours before using the machine.

2. Assembly and connections

(1) Connect the handset cord to the handset and the machine as shown.

- The ends of the hand set cord are identical, so they will go into either jack.
Place the handset on the handset rest.

(2) Plug the power lead into a $230-240 \mathrm{~V}, 50 \mathrm{~Hz}$, grounded (3-prong) AC outlet.
- The fax does not have a power onioff switch, so the power is turned on and off by simply plugging in or unplugging the power lead.

(3) The SPEAKER/RINGER VOLUME switch controls the volume of the speaker and the ringer. Adjust it from high (H) to low (L) as desired.

(4) Insert the small modular plug which terminates the FO80TP adaptor line cord into the socket on the back of the fax marked "TEL. LINE". Plug the FO80TP adaptor into the telephone socket on the wall.
- Be sure to plug the line cord into the TEL. LINE socket on the fax. Do not plug it into the TEL. SET socket.
- Your fax is designed to operate on a tone dial (DMTF) line only.

(5) Attach the original document support.
- Insert the tabs of each into the holes at the rear of the fax as shown.

4. Loading the recording paper

(1) Pull the cover release on the right side of the fax forward, and open the cover.

- The fax will beep.

Remove the packing paper from the paper compartment.

(2) Unwrap the roll of fax paper and insert it in the compartment.

- Make sure the hubs on each side of the compartment fit into the ends of the roll. The hub on the left side is mounted on a spring to allow for insertion.
- important: The roll must be placed so that the leading edge of the paper feeds out from over the top of the roll. (The paper is only coated on one side for printing. If the roll is placed upside down, the paper will come out blank after printing.)

Note: The paper roll provided is only a sample roll which is approximately 49 ft . (15 m) long. The FO-145 uses a standard 98.4 ft . $(30 \mathrm{~m})$ roll.
THERMAL PAPER (98.4ft. roll): FO-20PRw
(3) Pass the leading edge of the paper through the received document outlet at the rear of the fax.

(4) Close the cover by pushing down gently on the center, and then press the START key. A short length of the fax paper will feed out. Grasp the paper by the edge and pull upward to tear it off.

[5] Quick reference guide
Use this guide as a convenient reminder for operating the machine after you have read the detailed instructions for each procedure in the manual.
Note:

- Steps which are optional are enclosed in a dotted frame: \square
Transmitting documents

Normal Dialing	
Direct Keypad Dialing	
Rapid Key Dialing	
Speed Dialing	
Redialing	

Making voice calls

Normal Dialing	$\underset{\substack{\text { Lift handset } \\ \text { or } \\ \text { press SPEAKER }}}{ } \rightarrow \underset{\text { Dial (press }}{\text { numeric keys) }} \rightarrow \rightarrow \begin{aligned} & \text { Lift handset if you } \\ & \text { pressed SPEAKER } \end{aligned}$
Papid Key Dialing	$\begin{aligned} & \text { Lift handset } \begin{array}{c} \text { or } \\ \text { or } \\ \text { press SPEAKER } \end{array} \end{aligned} \rightarrow \begin{aligned} & \text { Press Rapid } \\ & \text { key } \end{aligned} \rightarrow \begin{aligned} & \text { Lift handset if you } \\ & \text { pressed SPEAKER } \end{aligned}$
Speed Dialing	
Redialing	$\begin{gathered} \text { Lift handset } \\ \text { or } \\ \text { press SPEAKER } \end{gathered} \rightarrow \underset{\mathrm{O}}{\text { REDML }} \rightarrow \begin{gathered} \text { Litt handset if you } \\ \text { press SPEAKER } \end{gathered}$

Operations using the FUNCTION key

The following chart shows the layout of the functions and settings accessed by pressing the FUNCTION key. First press the FUNCTION key, the appropriate unmeric key as shown, and then "\#" or " \neq " until the desired item appeares.
Instructions for making each setting appear in the display. If you have any difficulty, refer to the detailed instructions on the page shown below the setting.

CHAPTER 2. ADJUSTMENTS

[1] Adjustments

General

Since the following adjustments and settings are provided for this model, make adjustments and/or setup as necessary.

1. Adjustments

Adjustments of output voltage (FACTORY ONLY)

1. Install the power supply unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.
Output voltage settings

Output	Voltage limits
+12 V	$11.4 \mathrm{~V}-12.6 \mathrm{~V}$
+5 V	$4.85 \mathrm{~V}-5.15 \mathrm{~V}$
$\mathrm{VM}(+24 \mathrm{~V})$	$23.3 \mathrm{~V}-24.7 \mathrm{~V}$

Connector No.	CNPW
Pin No.	
1	MG
2	MG
3	VM
4	VM
5	DG
6	+5 V
7	AG
8	+12 V

2. IC protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit and the plunger drive circuit. ICPs protect various ICs and electronic circuits from an overcurrent condition.
The location of ICPs are shown below:

(1) F1 (ICP-S0.7) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If F1 is open, replace it with a new one.
(2) F2 (ICP-S0.5) is installed in order to protect IC's from an overcurrent generated in the plunger drive circuit. If F2 is open, replace it with a new one.
In addition to the replacement of F1 and F2, the factor causing F1 and F2 to open must also be repaired. If not, F1 and F2 will open again.

3. Settings

(1) Volume switch setting
a) SPEAKER/RINGER VOLUME

This switch controls the volume of the ringer and the speaker.

Adjust it from high (\mathbf{H}) to low (L) as desired.

[2] Diagnostics and service soft switch

1. Operating procedure

(1) Entering the diagnostic mode

Press FUNC $\rightarrow 9 \rightarrow * \rightarrow 8 \rightarrow \# \rightarrow 7$, and the following display will appear.
ROM Ver. FSFOX After 2 sec DIAG MODE
Then press the START key. Select the desired item with the $\#$ key or the $\#$ key or select with the rapid key. Enter the mode with the START key.
(Diag•specifications)

If the dial mode cannot be set, repeat the dial mode operation, performing the following operation.

2. Diagnostic items

ITEM No.	RAPID key	Contents	
1	01	Soft switch setting mode	Display soft SW contents, and changes the setting.
2	02	ROM \& RAM check mode	Checks program ROM (128KByte) and work RAM (8KByte+2KByte).
3	03	Aging mode	Prints the check pattern at the speed of 1 sheet/5 minutes.
4	04	Panel check mode	Displays the name of key depressed on the operation panel.
5	05	Check pattern mode	Prints 2 sheets of check pattern.
6	06	Product check mode	Executes No. 6, No. 3 and No. 7 continuously.
7	07	Signal send mode	Sends modem signals sequentially.
8	08	Memory ciear mode	Clears the backup memory contents to reset it to the initial state.
9	09	CCD adjust mode	Used for CCD adjustment. Executes copy operation. When the STOP key is pressed, the unit goes into the wait state. When the START key is pressed again, the unit starts operation again. 10
11	11	Signal detect mode	Detecting CNG signal, quiet and DTMF signals.
12	12	Entry data rcv. mode	Receives telephone list, passcode list and option set list contents.
13	13	Copy test mode	Checks the copy operation.
14	14	All black copy	Performs all-dot printing (2m). (Check thermal head operation)
15	15	Auto feeder mode	Feeds the original documents.

3. Diagnostic items description

Rapid key 01: Soft switch setting mode

Used to change the soft switch settings.
The soft switch which is stored internally is set by using the keys.
The available soft switches are SW1 to SW15.
The content of soft switches is shown in page 2-5 to 2-12.
The contents are set to factory default settings.

Rapid key 02: ROM \& RAM check mode

ROM executes the sum check, and RAM executes the matching test. The result will be notified with the number of short sounds of the buzzer as well as by printing the ROM \& RAM check list.
Number of short sounds of buzzer $0 \rightarrow$ No error
$1 \rightarrow$ ROM error
$2 \rightarrow$ RAM error

Rapid key 03: Aging mode

If any document is first present, copying will be executed sheet by sheet. If no document is present, the check pattern will be printed sheet by sheet. This operation will be executed at a rate of one sheet per 5 minutes, and will be ended at a total of 10 sheets.

Rapid key 04: Panel check mode

In this mode, whether each key operates properly or not is checked. Press a key on the operation panel, and the corresponding key will be displayed. In this mode, press the STOP key, and the list of the keys pressed in this mode will be printed with the mode ended.
Whether all keys are pressed in this mode or not will be judged when the list is printed, and the result will be printed.

Dial test

When the ten-key pad is pressed during panel test, dialing is performed through DTMF.

Rapid key 05: Check pattern mode

This mode is used to check the status of print head. Two sheets of check pattern are printed. The following information of check pattern is printed.
(1) Vertical stripes (alternate white and black lines) Approx. 35 mm
(2) Full black
$\begin{array}{ll}\text { (3) Full white } & \text { Approx. } 70 \mathrm{~mm} \\ \text { Approx. } 35 \mathrm{~mm}\end{array}$

Rapid key 06: Product check mode

This mode is used to perform No. 4 (panel check), No. 2 (ROM \& RAM check) and No. 5 (check pattern) continuously.
This mode set the line monitor (SW4 No. 8) and quick diag (SW6 No. 4) to "YES", and telephone number (01~04) is entered.
You will need to perform "MEMORY CLEAR" when complete.

(Rapid)		(Setting number)	
01	\rightarrow	01	
02	\rightarrow	02	
03	\rightarrow	03	
04	\rightarrow	04	

Rapid key 07: Signal send mode

This mode is used to send various signals to the line.
FAX signals are sent in the level set by the soft switch.
[1] No signal (CML signal turned on)
[2] 9600 bps
[3] 7200 bps
[4] 4800 bps
[5] 2400bps
[6] 300 bps (FLAG)
[7] 2100 Hz (CED)
[8] 1100 Hz (CNG)
[9] END
The signal can be checked by plugging the handset into the TEL line connector on the rear of the machine.

Rapid key 08: Memory clear mode

This mode is used to clear the backup memory and reset to the default settings.

Rapid key 09: CCD adjust mode

This mode is used to adjust the optical system. Since the copy is function performed, set the original. To abort the copy operation, press the STOP key. To restart press the START key. When the copy is completed or when the STOP key is pressed in the interruption state, exit from this mode occurs.

Rapid key 10: Signal detect mode

This mode is used to detect signals on the EXT. TEL line (CNG, QUIET, DTMF). The results are given with the result list.

Rapid key 11: Entry data send

This mode is used to send the registered data to the remote machine and make the remote machine copy the registered information. When this mode is used for sending, the remote machine must be set to the entry data receive mode (Rapid key 12).
The information to be sent is as follows.

1. Information which can be registered in the "FUNC" + " 3 " entry mode.
(Excepting data and time)
2. Soft switch data

Rapid key 12: Entry data rcv. mode

This mode is used to receive the registered data which is sent from the remote machine and to register the received data in the machine. When this mode is used to receive the information, the remote machine must be set to the entry data send mode (Rapid key 11).

After completion of reception, the telephone number list, passcode list, option set list, and soft switch list are printed.

Caution

Unless the time mode is set, the list print is not performed, "NO DATA ${ }^{*}$ appears on the display.

Rapid key 13: Copy test mode

This mode is used to check the copy operation and picture quality.
Before using this mode, set the original. If there is no original, the recording paper is cut.
The first page is copied in condition of FINE/AUTO the second and the subsequent pages are copied in condition of H-TONE/DARK.

Rapid key 14: All back copy

This mode is used to check the print head.
All-dot print is executed unconditionally until $2(\mathrm{~m})$ is obtained except when any trouble occurs (recording paper has run out, recording paper jam, thermal protect).

Rapid key 15: Auto feeder mode

In this mode, a document is inserted and discharged to check the auto feed function.

After this mode is started, set a document, and the document feed will be automatically tested.

4. How to make soft switch setting

To enter the soft switch mode, make the following key entries in sequence.

5. Soft switch description

- Soft switch list

FO-145A

- Soft switch functional description

SW1 No. 1 Line density choice

Used to set the transmission mode which is automatically selected when the Resolution key is not pressed. In the copy mode, however, the fine mode is automatically selected unless the Resolution key is manually set to another mode.

SW1 No. 2 Reserved

Set to "0"
SW1 No. 3, No. 4 Communication result printout
(transaction report Print select)
It is possible to obtain transaction results after each communication. Normally, the switch is set (No. 3:0, No. 4:0) so that the transaction report is produced only when a communication error is encountered.
If No. 3 was set to 1 and No. 4 to 0 , the transaction report will be produced every time a communication is done, even if the communication was successful.
Setting No. 3 to 1 and No. 4 to 1 will disable this function. No transaction report printed.
No. 3:0 No. 4:1=TX ONLY Report Print
SW1 No. 5 Automatic switching from manual to auto receive mode
This soft switch is used to select whether the machine should switch to the auto receive mode after 4 rings in the manual receive mode or remain in the manual mode. When the soft switch is set to " 1 ", the machine operates in the same way as SW9 No. $1 \sim$ No. 4.

SW1 No. 6 Automatic switching mode

This soft switch is used to set the auto tel/fax select mode or to set the normal fax mode.

SW1 No. 7 End buzzer

Setting this bit to " 1 " will disable the end buzzer (including the error buzzer/on-hook buzzer).
SW1 No. 8 Fax switching when answering recording full
Used to disable or enable the function of OFF-HOOK hold.
If the answering machine's memory (tape) is full and there is no response, the machine automatically switches to Fax reception.
The OFF HOOK hold time (Answering machine operating time) is set by normal operation.

SW2 No. 1300 BPS frame check time

Communication command wait time setting (Used by technical engineers. For the market, fixed to 6 S .) Default setting: 6 S

SW2 No. 2 Forced 4800 BPS reception

When line conditions warrant that receptions take place at 4800 BPS repeatedly. It may improve the success of receptions by starting at 4800 BPS. This improves the receiving document quality and reduces handshake time due to fallback during training.

SW2 No. 3 Reserved

Set to "0".

SW2 No. 4 CED tone-signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppression switch, causing a communication problem.
Though this soft switch is normally set to " 0 ", it should be set to " 1 " so as to change the timer between the CED tone and DIS signal from 75 ms to 500 ms to eliminate the communication problem caused by echo.

$$
\begin{aligned}
& \text { "0" set: } T=75 \mathrm{~ms} \\
& \text { "1" set: } T=500 \mathrm{~ms}
\end{aligned}
$$

SW2 No. 6 Digital line equalization setting

Line equalization is to be set according to the line characteristics.
Setting should be made according to the distance between the telephone and the telephone company central switching station.
SW2 No. 7, No. 8 Modem speed
Used to determine the initial modem speed. The default is 9600 bps . It may be necessary to program it to a slower speed when frequent line fallback is encountered, in order to save the time required for fallback procedure.
SW3 No. 1 Maximum copy, transmission, reception page length Used to set the maximum page length.
To avoid possible paper jam, the page length is normaliy limited to 1 meter for copy or transmission, and 1.5 meters for reception.
It is possible to set it to "No limit" to transmit a long document, such as a computer print form, etc. (In this case, the receiver must also be set to no limit.)
SW3 No. 2 Footer print
When set to "1", the date of reception, the sender machine No., and the page No. are automatically recorded at the end of reception.

SW3 No. 3 Sender's phone number registration

Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to "1", new registration of the sender's phone number is disabled to prevent accidental wrong input.
SW3 No. 4 CSI transmission
(CSI TRANSMISSION) is a switch to set whether the machine sends or does not send the signal (CSI signal) informing its own telephone No. to the remote fax machine when information is received. When "nonsending" is set, the telephone No. is not output on the remote transmitting machine if the remote transmitting machine has the function to display or print the telephone No. of receiving machine, using this CSI signal.

SW3 No. 5 ~ No. 8 Quiet detect start time
Inserts a pause before commencing quiet detection.
SW4 No. 1 Reserved
Set to "0".
SW4 No. 2 Dialing pause
Pauses can be inserted between telephone numbers of direct dial connection. Selection of 4 sec or 2 sec pause is available.

SW4 No. 3 Reserved

Set to "0"
SW4 No. 4 DIS receive acknowledgment during G3 transmission
Used to make a choice of whether reception of DIS (NSF) is acknowledged after receiving two DISs (NSFs) or receiving one DIS (two NSFs).
It may be useful for overseas communication to avoid an echo suppression problem, if set to 1.

SW4 No. 5 Non-modulated carrier detection for V29 modem

Though transmission of a non-modulated carrier is not required for transmission by the V29 modem according to the ITU-T (CCITT) Recommendation, it may be permitted to a send non-modulated carrier before the image signal to avoid an echo suppression problem. It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .

SW4 No. 6 EOL (End Of Line) detect timer
Used to make a choice of whether to use the 25 -second or 5 -second timer for detection of EOL.
This is effective to override communication failures with some facsimile models that have longer EOL detection.

SW2 No. 5 Reserved
Set to "0".

SW4 No. 7 Protocol monitor

Normally set to "0". If set to "1", communication can be checked, in case of troubles, without using a G3 tester or other tools.
When communication FSK data transmission or reception is made, the data is taken into the buffer. When communication is finished, the data is analyzed and printed out. When data is received with the line monitor (SW4-No. 8) set to "1", the reception level is also printed out.

SW4 No. 8 Line monitor

Normally set to "0". If set to "1", the transmission speed and the reception level are displayed on the LCD. Used for line tests.
SW5 No. $1 \sim$ No. 4 Signal transmission level
Used to control the signal transmission level in the range of -0 dB to -15 dB .
The factory setting is at -14 dB (Modem output).

SW5 No. 5 Sender's information transmit

(SENDER'S INFORMATION TRANSMISSION) is a switch to set the function to print the content of HEADER PRINT described in the passcode list at the front end of receiver's original when original is sent to the remote machine.
If this switch is set to "NO", the HEADER PRINT is not output at the receiving machine.

SW5 No. 6 H 2 mode (SHARP special mode)

Used to determine reception of H 2 mode (15 sec transmission mode). When set to OFF, H2 mode reception is inhibited even though the transmitting machine has H 2 mode function.

SW5 No. 7, No. 8 Reading slice (binary)

Used to determine the set value of reading density in standard/fine mode. The standard setting is " 00 ". (Factory setting is " 00 ".)
SW6 No. 1, No. 2 Reading slice (halftone)
Used to determine the set value of reading density in halftone mode. The standard setting is " 00 " (Factory setting is " 00 ").
SW6 No. 3 Character detection sensitivity setting in halftone mode
In the halftone mode, image area is separated from character area and processed separately to eliminate unclear character transmission. This switch is used to change the criteria of judgement of separation. When "Strong" ($=1$) is selected, more area is judged as character area, providing clearer characters. On the contrary, however, edges of image area may be emphasized.
It is advisable to restrict the use of this function only when clear characters must be transmitted, and to use the function of "Weak" $(=0)$ for general use.

SW6 No. 4 Into DIAG mode by SPEED key

A bit which is used in the production process only. When the "SPEED" key is pressed, the switch is changed from the stand-by state to the DIAG mode.

SW6 No. 5 Communication error treatment (reception) in RTN

 sendingUsed to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to "1", communication error is judged as no error.

SW6 No. 6, No. 7 DTMF detection time

Used to set detection time of DTMF (Dual Tone Multi Frequency) used in remote reception $(5, *, *)$.
The longer the detection time is, the less the error detections are caused by noises.

SW6 No. 8 Remote reception $(5, *, *)$ detect
Used to set the function of remote reception $(5, *, *)$. When set to " 1 ", the remote reception function is disabled.
SW7 No. 1 Auto dial mode Delay timer of before-line connect
Delay time between the dial key input and line connection under the auto dial mode.

SW7 No. 2, No. 3 Auto dial mode Delay timer of after-line connect Delay time between the line connection and dial data output under the auto dial mode.

SW7 No. 4 Reserved

Set to "0".

SW7 No. 5 CNG transmission

When set to " 0 ", this model allows CNG transmission by pressing the start key in the key pad dialing mode. When set to " 1 ", CNG transmission in the key pad dialing mode cannot be performed. In either case. CNG transmission can be performed in the auto dial mode.

SW7 No. 6 Remote reception

(Corresponding to TEL made by GE) P.B.X.
"1" : Compatible with TEL made by GE
" 0 ": Not compatible

- When sending $(5, *, *)$ for remote reception with a GE manufactured telephone, remote reception may not take place because of special specifications in their DTMF.
To overcome this, a soft SW is provided to change the modem setting to allow for remote reception.
- If this soft SW is set to "1", other teiephone sets may be adversely affected.
SW7 No. 7 Auto gain control (MODEM)
When this mode is enabled, if the reception signal level is under 31 dBm . The modem itself controls the signal gain automatically.

SW7 No. 8 Reserved

Set to "0".

SW8 No. 1 ~ No. 4 Recall interval

Choice is made for a redial interval for speed and rapid dial calls. Use a binary number to program this. If set to 0 accidentally, 1 will be assumed. If a number above 5 was entered, it will be set to 5 . In this case, it has to be corrected.

SW8 No. 5 ~ No. 8 Recall times

Choice is made as to how many redials should be made. Use a binary number to program it. If set to 0 or 1 by accident, the redial number will be set to 2 . If a number above 9 was entered, it will be set to 9 .

SW9 No. $1 \sim$ No. 4 Number of rings for auto answer mode

When the machine is set in the auto receive mode, the number of rings before answering can be selected. It may be set from one to nine rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook, it should be programmed to the user's choice. If the soft switch was set to 1 , direct connection is made to the facsimile. If a facsimile calling beep was heard when the handset is taken off the hook, press the START key and put the handset on the hook to have the facsimile start receiving. If it was set to 0 accidentaily, receive ring is set to 1 . If it was above 9 , receive rings are set to 9 .
NOTE: If the machine is set to answer after a large number of rings, it may not be able to receive faxes successfully. If you have difficulty receiving faxes, reduce the number of rings to a maximum of 4 .
SW9 No. 5 ~No. 8 Remote operation code figures by external TEL
Remote operation codes can be changed from 0 through 9 . If set to greater than 9 , it defaults to 9 . The " $* "$ is not changed and the new function becomes, number programmed plus $*$.
Ex-7** (Default: "5" " " " " $^{\prime \prime}$ ".)
SW10 No. 1: Ringer switch
If this switch is set to "OFF", the ringer of fax does not ring when a call from a party is received.

FO-145A

SW10 No. 2 Busy tone detection continuous sound detect time Selects detection of the continuous sound of 440 Hz (SW11 No. 8) for 10 sec or 5 sec .
SW10 No. 3, No. 4 Number of busy tone detection pulses
Used to set detection of busy tone continuous sounds.
SW10 No. 5 Ci off detection timer
(Distinctive ring setting off only)
Sets the minimum time period of Cl signal interruption which affords to be judged as a CI OFF section.

SFTSW10-5 $=0: 700 \mathrm{msec}(\mathrm{Cl}$ interruption $>700 \mathrm{msec}$: Judged as a CI OFF section)

The section (1) is not judged as a Cl OFF section, the Cl signal A is counted as one signal.
The section (2) is judged as a CI OFF section, the Cl signal B is considered as the second signal.
SFTSW10-5 $=1: 350 \mathrm{msec}(\mathrm{Cl}$ interruption $>350 \mathrm{msec}$: Judged as a Cl OFF section)

The section (1) is judged as a Cl OFF section, and the Cl signal A is counted as two signals.
The section (2) is judged as a Cl OFF section, and the Cl signal B is considered as the third signal.
SW10 No. 6 ~ No. 8 Reserved
Set to "0".
SW11 No. 1 Busy tone detection ON/OFF time (Lower limit)
The initial value of detection is set according to electric condition.
The set value is changed according to the local switch board. (Erroneous detection of sound is reduced.)
Normally, the upper limit is set to 900 ms , and the lower limit to 150 ms .
If erroneous detection is caused by sound, etc, adjust the detection range.
The lower limit can be set in the range of 350 ms to 150 ms .
SW11 No. 2 Busy tone detection ON/OFF time (Upper limit)
Similarly to SW11 No. 1, the set value can be varied.
The upper limit can be set in the range of 650 ms to 900 ms .

SW11 No. 1	SW11 No. 2	Detection range
0	0	$150 \mathrm{~ms}-900 \mathrm{~ms}$
0	1	$150 \mathrm{~ms}-650 \mathrm{~ms}$
1	0	$350 \mathrm{~ms}-900 \mathrm{~ms}$
1	1	$350 \mathrm{~ms}-650 \mathrm{~ms}$

SW11 No. 3 TAD CONNECTED

When connecting the answering machine to the extension telephone jack, set to "1".
SW11 No. 4 Busy tone detection intermittent sound detection Line off detection YES/NO is set.
SW11 No. 5, No. 6 Number of CNG signal detection in T.A.D. mode
Used for detection of CNG in $1 \sim 4$ pulses in T.A.D. mode.
SW11 No. 7, No. 8 Reserved
Set to "0".

SW12 No. 1 - No. 8 Reserved
Set to "0".
SW13 No. 1 ~ No. 3 Reserved
Set to " 0 ".
SW13 No. 4 ~ No. 8 Quiet detect time
(Used in answering machine mode)
When an answering machine is connected, if a no sound state is detected for a certain period of time, the machine judges it as a transmission from a facsimile machine and automatically switches to the Fax mode.
SW14 No. 1, No. 2 Pseudo ringing time at Phone/Fax automatic switching mode
Choise is made to as how long to rumble the dummy ringer on TELFAX automatic switching mode.

SW14 No. 3 Equalization freeze control

This switch is used to perform reception operation by fixing the equalizer control of modem for the line which is always in unfavorable state and picture cannot be received.

* Usually, the control is executed according to the state of line where the equalizer setting is always changed.

SW14 No. 4 Equalization freeze 7200BPS only

Setting which specifies SW14, No. 3 control only in condition of $7200 B P S$ modem speed.
SW14 No. 5, No. 6 Pseudo-ringer sound volume (on selecting TELFAX)
Used to adjust sound volume of pseudo-ringer (ring back tone) generated on selecting TEL/FAX. Setting can be altered.

SW14 No. 7, No. 8 Reserved

Set to "0".
SW15 No. 1, No. 2 Section time of quiet detection
The switch which sets the time from the start of quiet detection function to the end of the function.

SW15 No. 3 ~ No. 5 Reserved
Set to "0".

SW15 No. 6 Post answer tone

This switch is used to send tones of RA $(880 \mathrm{~Hz}), \mathrm{Sl}(988 \mathrm{~Hz})$, and DO $(1046 \mathrm{~Hz})$ in the TEL/FAX auto select mode.
SW15 No. 7, No. 8 Reserved
Set to "0".

[3] Troubleshooting

Refer to the following actions to troubleshoot any of problems mentioned in 1-4.
[1] A communication error occurs.
[2] Image distortion produced.
[3] Unable to do overseas communication.
[4] Communication speed slow due to FALLBACK.

- Increase the transmission level SOFT SWITCH 5-1 234. May be used in case [1] [2] [3]
- Decrease the transmission level SOFT SWITCH 5-1 234. May be used in case [3].
- Apply line equalization SOFT SWITCH 2-6. May be used in case [1] [2] [3] [4].
- Slow down the transmission speed SOFT SWITCH 2-7. 8 May be used in case [2] [3].
- Replace the LIU PWB. May be used in all cases.
- Replace the control PWB May be used in all cases.
* If transmission problems still exist on the machine, use the following format and check the related matters.
TO: 1 ATT:

* Please complete this report before calling the "TAC" hotline if problem still occurs.

[4] Error code table

G3 Transmission

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSF, DIS	Cannot recognize DCS signal Cannot recognize NSS signal
2	CFR	Disconnects line during reception
3	FTT	Disconnects line by fallback
4	MCF	Disconnects line during reception of multi-page Cannot recognize NSS, DCS signal in the case of mode change
5	PIP or PIN	No response in receiver side to picture signal after no response in transmitter side to receive TALK mode request
6	RTN or RTP	Cannot recognize NSS, DCS signal after transmitting RTN or RTP signal.
7	No signal or DCN	No response in receiver side or DCN signal received ${ }^{*}$

G3 Reception

Code	Final received signal	Error Condition (Transmitter side)
0	Imcomplete signal frame	Cannot recognize bit stream after flag
1	NSS, DCS	Cannot recognize CFR or FTT signal Disconnects line during transmission
2	NSC, DTC	Cannot recognize NSS signal
3	EOP	Cannot recognize MCF, PIP, PIN, RTN, RTP signal
4	EOM	Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of mode change
5	MPS	Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of multi-page
6	PR1-Q	Cannot recognize PIP, PIN signat in the case of TALK request
7	No signal or DCN	No response in transmitter (cannot recognize DIS signal) or DCN signal received ${ }^{+}$

CHAPTER 3. MECHANISM BLOCKS

[1] General description

Fig. 1

2. Document feed operation

1) The document placed in the hopper actuates the document sensor. After one second, the pulse motor starts to drive the paper feed roller. The document is automatically taken up into the machine, and stopped at the document sensor.
2) When a specified number of pulses are received from the document sensor after the document lead edge is sensed, scanning is started.
3) When a specified number of pulses are received from the document sensor after the document rear edge is sensed, scanning is terminated and the document is fed through.
4) If the document sensor is active (i.e., another document is in the hopper), when the preceding document scanning is completed and it is fed out, the next document is taken up into the machine. If the document sensor is not active (i.e., there is no document in the hopper), when the document is fed out, the operation is terminated.

3. Hopper mechanism

3-1. General view

Fig. 2
The hopper is used to align documents with the document guides adjusted to the paper width.
NOTE: Adjust the document guides before and after inserting the document.

3-2. Automatic document feed

1) Use of the paper feed roiler and separation rubber plate ensures error-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separation rubber plate

Fig. 3

3-3. Documents applicable for automatic feed

	$\begin{aligned} & 4 \times 6 \text { series } \\ & (788 \mathrm{~mm} \times 1091 \mathrm{~mm} \times \\ & 1000 \mathrm{~mm} \text { sheets }) \end{aligned}$		Square meter series	
	Minimum	Maximum	Minimum	Maximum
Feeder capacity	18 sheets, max.			
Paper weight	45 kg	64.3 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$74.3 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.09 mm	0.06 mm	0.09 mm
Paper size	$\begin{aligned} & \text { B6 }(128 \mathrm{~mm} \times 182 \mathrm{~mm}) \text { - } \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}) \text {, Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \end{aligned}$			
Feeder capacity	10 sheets, max.			
Paper weight	45 kg	90 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$104 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.12 mm	0.06 mm	0.12 mm
Paper size	$\begin{aligned} & \hline \text { B6 (} 128 \mathrm{~mm} \times 182 \mathrm{~mm}) \text { - } \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}) \text {, Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \\ & \hline \end{aligned}$			
Paper quality	High quality paper or equivalent			

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.

Documents corresponding to a paper weight heavier than 64.3 kg $\left(74.3 \mathrm{~g} / \mathrm{m}^{2}\right)$ and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.
Documents heavier than 135 kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.
NOTES: 1) Curled edge of documents, if any, must be straighten out.
3) Do not load the documents of different sizes and/or thicknesses together.

Fig. 4

3-5. Documents requiring use of document carrier

1) Documents smaller than $B 6$ ($128 \mathrm{~mm} \times 182 \mathrm{~mm}$).
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curls, especially those whose surface is curled (maximum allowable curl is 5 mm).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carrier.)
6) Documents containing an easily separable writing material (e.g., those written with a lead pencil).
7) Transparent documents.
8) Folded or glued documents.

Document in document carrier should be inserted manually into the feeder.

4. Document release

4-1. Cross section view

(RIGHT SIDE)

Fig. 5

4-2. General

When the release lever is pulled by hand in the direction of arrow A, the latch is released and the upper document guide moves on its axis in the direction of the arrow. The feed rollers, the separation rubber plate, and the pinch rollers become free to make it possible to remove the document.

5. Optical system

(1) General view

Fig. 6

(2) Composition

The optical system is composed of the document feed mechanism, the lamp, the reflecting mirrors, the focusing lens, the CCD sensor, and the read process circuit.

5-1. LED Lamp

The LED lamp is used to expose the document.

5-2. Lens

The lens is used to focus the light reflected from the document on the CCD elements.

5-3. CCD

The GCD (charge coupled device) image sensor consists of a photodiode array which converts the intensity of light reflected from the document surface into series of analog voltages which are then stored in an analog shift register. The series of analog voltages are then converted into a digital equivalent by a black/white binary logic circuit.
(Example) Scan signal output waveform

Fig. 7

1) The minimum output from the $C C D$ at the maximum scan width of document (216 mm) must be more than 40% of the peak value.
2) The peak output must be about 200 mV under room temperature to avoid CCD saturation.

6. Recording block

(1) General view

Fig. 8

6-1. Driving

Via the pulse motor gear shaft, the reduction gear, and the recording paper feed gear, rotation of the pulse motor is conveyed to the recording paper feed roller to feed the recording paper.

6-2. Recording

Use of a thermal head permits easier maintenance and low operating costs.

1) Thermal head

The thermal head consists of 1728-dot heat elements arranged in a single row and has the resolution of 8 dots $/ \mathrm{mm}$. The maximum recording speed is $10 \mathrm{~ms} / \mathrm{line}$. The thermal head also incorporates a 1728 -dot shift register latch and an output control driver circuit. Low power consumption is achieved by dividing the head into nine segments.

2) Structure of the recording mechanism

Recording is accomplished by pressing the thermal head on the recording paper against the platen roller.

The main scan (horizontal) is electronically achieved, while the subscan (vertical) is achieved by moving the recording paper by the recording platen roller.

Usually, the cause for uneven print tone is caused by misalignment of the thermal head or uneven contact with the roller.
It can be checked in the following manner.

1) Check if the thermal head power and signal cables are properly routed.
2) Check that the thermal head pivot moves smoothly up and down.
3) Check that the thermal head support bracket is secured without any play.
4) Check to see that the recording platen roller has proper concentricity, in the case of a print tone variation evenly repeated down the page.
5) Replace the thermal head with a new one and check to see if the same trouble occurs

[2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.

Fig. 1

[Note for assembly]

1. When assembling handset holder ass'y (5) in Fig. 1, note the following items.

- Insert two pawls (C) and (D) in Fig. 1 into the groove in the lower cabinet.
- Put the right edge of the handset holder cabinet inside the lower cabinet.
- Lock two pawls (B) in Fig. 1 securely.
- Check that three sensor levers (E) in Fig. 1 move smoothly.

2
Head unit, etc.
a. Remove the rear cover and the handset hoider ass'y from the mechanism unit according to procedure 1-a.
b. Disconnect the connectors and grounding wire from the upper cabinet ass'y.
c. Remove the upper cabinet ass'y.
d. Remove the head unit.

	Parts list (Fig. 2)		
-	No.	Part name	Q'ty
e	1	Lower cabinet	1
er 1	2	Upper cabinet ass'y (with origina! upper ass'y)	1
	3	Screw (3×6)	2
(2)	4	Head cover	1
	5	Head unit ass'y	1
(3)	6	Screw (3×6)	1
(4)	7	Head Grounding cable	1
	8	Head pressure spring	3
(9)-5	9	Head cable	1
	10	Screw (3x6)	2
$(10)(6)$	11	Head holder	2
	12	Thermal head	1

Parts list (Fig. 2)

3. After installing the bearing of A, install the bearing (having a notch) of B.

- The wire arrangement and guide lever are shown in the figure.

3	Upper cabinet ass'y

a. Remove the upper cabinet ass'y from the original guide upper ass'y.
b. Disassemble the upper cabinet ass'y.

Fig. 3

[Note for assembly]

1. When replacing the decoration panel (12) in Fig. 3, note the following items.

- Remove oil from the attachment surface on the upper cabinet with alcohol.
- Check that the display window is free from dirt and scratchs.
- Attach properly to the attachment region on the upper cabinet.

2. When assembling hopper guides L (11) and R (11), note the following items.

- Put two ribs (C) of each of hopper guides (10) and (11) under the upper cabinet. (Refer to the enlarged view.)
- When inserting pinion (8), move the hopper guides (10) and (11) to the inside, insert pinion (8) and fix it with screw (7).
<Check>
- Check that the right and left hoppers are in position and are opened and closed smoothly.
- Move hopper guide R (11) at the rate of about $10 \mathrm{~mm} / \mathrm{sec}$ in the direction of arrows (A) and (B) by using a tension gauge to check that the load is in the range of 500 g to 150 g .

3. When assembling panel PWB (17) in Fig. 3, note the following items.

- When assembling PWB protection sheet (16) in Fig. 3, place the longer margin on the right side.
- When fixing 10 screws (13), first fix four screws in the sequence of [1] to [4] shown in the figure, then fix the six remaining screws.

4. When assembling upper cabinet ass'y (2) in Fig. 3, insert three ribs (D) under the original guide upper ass'y.
a. Remove the upper cabinet ass'y from the original guide upper ass'y according to procedure 3-a.
b. Remove the release lever, the transport roiler, and the pinch roller.

Parts list (Fig. 4)

No.	Part name	Qty
1	Original guide upper	1
2	Release lever	1
3	Release lever spring	1
4	Bearing	2
5	Transport gear	1
6	Transport roller	1
7	Pinch roller shaft	1
8	Pinch roller	2
9	Pinch pressure spring	2
10	Spring	1
11	Separation pressure plate	1
12	Separation rubber	1
13	Separation pressure spring	1

Fig. 4

[Note for assembly]

1. Fit the pinch pressure springs (9) simultaneously at the left and right sides.
2. When fitting the release lever spring, engage it from above.

5	Paper feed roller, etc.

a. Remove the rear cover and the handset holder ass'y from the mechanism unit according to procedure 1-a.
b. Disconnect the connectors and grounding wire from the upper cabinet ass'y.
c. Remove the upper cabinet and the original guide upper ass'y from the lower cabinet according to the procedure of 2-c.
d. Remove the platen roller and the cutter unit according to the flowchart.

Parts list (Fig. 5)

No.	Part name	Q'ty	No.	Part name	Q'ty	
1	Lower cabinet	1	11	Bearing	4	
2	Original sensor lever	1	12	Transport roller gear	1	
3	Lever return spring	1	13	Transport roller	1	
4	Front sensor lever	1	14	Paper feed roller gear	1	
5	Lever return spring	1	15	Paper feed roller	1	
6	Speaker	1	16	Platen roller gear	1	
7	Brake spring	1	17	Bearing	2	
8	Brake gear	1	18	Platen roller	1	
9	Paper sensor level	1	19	Brake spring	1	
10	Lever return spring	1				

Fig. 5

[Note for assembly]

1. Fit in the speaker until a contact is felt. The speaker cable is directed toward the rib. Fit the cable to the rib.

6

Optical system unit
a. Remove the rear cover and the handset holder ass'y from the mechanism unit according to procedure 1-a.
b. Remove the optical system unit from the lower cabinet.
c. Disassemble the optical system unit.
<Note> Never remove the CCD PWB, the lens, and the iens holding spring except when replacing or adjusting the optical system. If they are removed, adjustments of the

Parts list (Fig. 6)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Lower cabinet	1	11	Scanning giass	1
2	Connector (CCD)	1	12	Screw (2x6)	3
3	Connector (LED)	1	13	LED	1
4	Optical system unit	1	14	Screw (3×4)	2
5	Screw (M3 red)	2	15	Mirror holding spring (left)	1
6	CCD PWB	1	16	Mirror holding spring (night)	1
7	Light shielding sheet	1	17	Mirror (1)	1
8	Screw (3x6)	2	18	Mirror (2)	2
9	Lens holding spring	1	19	Sheet	2
10	Lens	1			

Fig. 6

[Note for assembly]

1. When assembling (17) mirrors (18) and in Fig. 6, note the follow ing items.

- Check that the mirrors are free from dust, finger prints, and dirt. The mirror surface (vaporized surface) should face in the arrow direction in Fig. 6.
- Insert the mirror spring securely.

2. Insert mirror holding springs (15) and (16) securely, and appiy screw lock to positions (A) (each two positions on the right and the left).
3. When assembling scanning glass (11) in Fig. 6, note the following items:

- Check that the scanning glass is free from dust, finger prints, and dirt. The inside cannot be cleaned after assembling. Be careful not to smear it when assembling.
- When assembling, be careful not to apply an excessive force in the arrow direction.

7

LIU PWB, control PWB, power PWB
a. Remove the rear cover and the handset holder ass'y from the mechanism unit according to procedure 1-a.
b. Disconnect the connectors and the grounding cable from the bottom plate ass'y (with PWBs).
<Note> When disassembling bottom plate ass'y (4), be careful not to damage the two knobs (A) of the volume.
c. Remove the LIU PWB, the control PWB, and the power PWB according to the flowchart.

Fig. 7

[Note for assembly]

1. When connecting LIU PWB (11) and control PWB (10) in Fig. 7, insert connector (B) securely.
2. When connecting LIU PWB (11) and power PWB © in Fig. 7, insert connector (C) securely.
3. When assembling $A C$ cord ass'y (6) to bottom plate (12) in Fig. 7, be careful the inserting direction. (Refer to the enlarged view of Fig. 7.)
4. When assembling bottom plate ass'y (4) (with PWBs) in Fig. 7, insert two knobs (A) of the volume into the square hole in the cabinet. Be careful not to pinch the cable.
5. Arrange the $A C$ cord as shown below.

8 Drive system unit

a. Remove the rear cover and the handset holder ass'y from the mechanism unit according to procedure 1-a.
b. Remove the platen roller from the lower cabinet.
C. Remove the drive system unit from the lower cabinet.
d. Disassemble the drive system unit.

Note for disassembly

When planetary gear ass'y (11) is removed, gear (1) may be set free and disassembled. Be careful not to lose it.

Fig. 8

[Note for assembly]

1. When assembling drive motor (25) in Fig. 8, be careful not to install it upside down. Place the cable port toward the upper side. (Refer to Fig. 8.)
2. Note and check the following items when assembling the gears.

- For insertion direction of the gear, refer to the enlarged view of Fig. 8.
- Apply grease (Molykote) to the shaded portion of gears (13) and (19). (Refer to the enlarged view.)
- Engage gears (18), (19), (21), and (21) securely with the shaft pawl.
<Check> Check that the planetary gear and the lock pawl operate smoothly without disengagement of the pawl section after assembly.

3. Insert lock pawl (7) in Fig. 8 into the dented portion of the solenoid shaft. (Refer to the enlarged view.)
4. For inserting direction of lock pawl return spring in (6) Fig. 8, refer to the enlarged view.
5. Engage drive system unit (5) in Fig. 8 with two positioning bosses and fix with a screw.

9	Wire treatment	Parts list (Fig. 9)		
		No.	Part name	Q'ty
a. Perform wire treatment carefully and deliberately. b. For wire treatment procedures which are not described in this section, refer to the section for that portion of the unit.		1	Cable band	2
		2	Core (TRA31 $\times 19 \times 10$)	1
		3	Screw (M3x5)	1

Fig. 9

CHAPTER 4. DIAGRAMS

[3] Point-to-point diagram

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description

1. General description

The compact design of the control PWB is obtained by using gate arrays in the main control section and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

2. PWB configuration

Fig. 1

1) Control PWB

The control PWB controls peripheral PWBs, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a 1-chip modem (R96SHF) which is installed on the control PWB.

2) TEL/LIU PWB

This PWB controls connection of the telephone line to the unit.

3) Power supply PWB

This PWB provides voltages of $+5 \mathrm{~V},+12 \mathrm{~V}$, and +24 V to the another PWB.

4) Panel PWB

The panel PWB allows input of the operation keys.

5) CCD PWB

This PWB controls the pickup optical device.

6) LCD PWB

This PWB controls the LCD display.

3. Operational description

Operational descriptions are given below:

- Transmission operation

When a document is loaded in standby mode, the state of the document sensor is sensed via the main controller gate array. If the sensor signal was on, the motor is started to bring the document into the standby position. With depression of the START key in the off-hook state, transmission takes place.
Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the scan processor, the signal scanned by the CCD is sent to the internal image processor and the AD converter to convert the analog signal into binary data. This binary data is transferred from the scan processor to the image buffer within the RAM and encoded and stored in the transmit buffer of the RAM. The data is then converted from parallel to serial form by the modem where the serial data is modulated and sent onto the line.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START key in the off-hook mode in the case of manual receive mode, or Cl signal detection by the LIU in the automatic receive mode.

First, the CPU controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C, the serial data from the modem is converted to parallel form in the modem interface of the main control gate array which is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the main control gate array which is then converted from parallel to serial form to be sent to the thermal head. The data is printed line by line by the CPU which is assigned to control the motor rotation and strobe signal.

- Copy operation

To make a copy on this facsimile, the COPY key is pressed when the machine is in stand-by with a document on the document table and the telephone set is in the on-hook state.

First, depression of the COPY key advances the document to the scan line. Similar to the transmitting operation, the image signal from the CCD is converted to a binary signal in the DMA mode via the main control gate array which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the thermal head which is printed line by line. The copying takes place as the operation is repeated.

FO-145A

[2] Circuit description of control PWB

1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 5 blocks.

Fig. 2 Control PWB functional block diagram

2. Description of each block

(1) Main control block

The main control block is composed of an 8 -bit microprocessor Z80180, ROM (128KByte), and RAM (8KByte+2KByte). Devices are connected to the bus to control the whole unit.

1) Z80180 (IC2) ... pin-80 QFP (CPU)

This is a CMOS 8 -bit microprocessor. A high-speed CPU (compatible with Z80 upper class models) and peripheral functions are incorporated in one chip.
This system allows the following functions.

- Memory Management Unit (MMU)
- DMA controller (2 channels); Channel 0: For read, Channel 1: For write.
- Timer
- Interruption; As external interrupt.
$\overline{\mathrm{INTO}}$: Modem interrupt
$\overline{\text { INT1: }}$ Not used
$\overline{\text { INT2: }}$ Mechanism control section/RTC detection interrupt.
Operating speed is 6 MHz .
In addition, 12 MHz clock is supplied from external clock input pin 76 as the basic clock of the modem (IC1).

For reset when power is turned on, a LOW signal of about 200 msec is supplied to RESET terminal.
2) 27 C 010 (IC9): pin-32 DIP (ROM)

EPROM of 1 Mbit equipped with software for the main CPU.
3) LH5160 (IC4): pin-28, SOP (RAM)

Line memory for the main CPU system RAM area and coding/decoding process. Used as the transmission buffer.
Memory of recorded data such as daily report and auto dials. When the power is turned off, this memory is backed up by the lithium battery.
4) LH5116 (IC6): Pin-24 SOP (RAM)

Work area for main program.
This IC is not backed up by the lithium battery.
5) LZ9FJ11 (IC5): pin-160, QFP (Gate Array)

The following functions are incorporated to support the CPU.

- CPU I/F and register
- l/O port
- CPU timer
- Read system control
- Memory mapping
- Mechanism/recording control block
- Modem I/F (RTC detection)
- Cutter control
- Real time clock I/F

6) NJU6355E (IC101): pin-8, SOP

The following functions are incorporated to support the CPU (IC2).

- Timer
- Calendar
- Battery backup for power off

Z80180 (IC2) terminal descriptions

Classification	Code	Terminal No.	Input/Output	Name and pin function		
System control signal	HALT	61	Output	HALT: LOW when the CPU executes HALT or SLP command. and shows to the outside that the CPU is in HALT mode. SLEEP mode, or SYSTEM STOP mode. Used with ST signa and $\overline{L I R}$ signal to show the operation status such as the interna DMA operation and the CPU operation mode.		
	$\begin{aligned} & \overline{\mathrm{LIR}} \\ & (\overline{\mathrm{M} 1}) \end{aligned}$	68	Output	Load instruction register: Shows that the cycle which is under operation is the operation code fetch cycle.		
	ST	7	Output	Status: Shows the operation status. Do not connect with a pull-down resistor.		
				ST	LIR	Operation status
				01	0	CPU operation (First operation code fetch cycle)
				1	0	CPU operation (Second, third operation code fetch cycles)
				1 1	1	CPU operation (Machine cycle other than operation code fetch cycle)
				1 Not fixed.	0	DMA operation
				0 0	0	HALT mode
				10	1	SLEEP mode, SYSTEM STOP mode
System control signal	$\overline{\text { REF }}$	64	Output	Refresh: When LOW, cycle. When LOW, ref 8 bits of the addr programmable in a sta	ws th add bus f 10 ,	the CPU is in DRAM refresh es are outputted to the lower (A0~A7). Refresh interval is 40 or 80 .
Interrupt signal	NM1	1	Input	Non-maskable interrup request terminal.	This	the non-maskable intterrupt
	$\overline{\mathrm{NT}} 0$	4	Input	Interrupt 0: Maskable 0 , there are three oper	rrupt n mo	0 request terminal. In level
				Operation mode		Content
				0	man	n the data bus is execu-
				1	$\begin{aligned} & \text { nman } \\ & 8 \mathrm{H} . \end{aligned}$	executed from address
				2	tor sy	
	$\overline{\mathrm{NT}}_{1}$	5	Input	Interrupt 1, 2: Maskable interrupt level 1 and 2 request terminals. Vector system		
	$\overline{\mathrm{NT}}_{2}$	6	Input			
DMA signal	$\overline{\text { DREQ }}_{0}$ (Commonly used with CKAO.)	50	Input	DMA request for channel 0: Internal DMAC transfer (to channei 0) request terminal. With this signal, the internal DMAC can operate in synchronization with the external I/O devices. The internal DMAC channel 0 supports the following transfer types: (a) Between memories (b) Between memory and I/O (c) Between memory and memory map I/O This terminal is multiplexed with CKAO terminal. When DMA channel 0 transfer mode is set to "Between memory and $1 / 0$ (including memory map $/ / O$)", $\overline{\mathrm{DREQ}}_{0}$ terminal serves as an input terminal.		
	$\overline{\text { TEND }} 0$	55	Output	Transfer end for channel 0: Internal DMAC channel 0 transfer sent signal. Driven LOW in synchronization with the last data transfer write cycle. This terminal is multiplexed with CKA1 terminal. When ASCI control register A channel 1 is set to " 1 ", it serves as $\overline{T E N D}_{0}$ terminal.		
	$\overline{\text { DREQ }}_{1}$	59	Input	DMA request for channel 1: Internal DMAC transfer (to channel 1) request terminal. Channel 1 supports only transfer between memory and I/O.		

Z80180 (IC2)

Classification	Code	Terminal No.	Input/Output	Name and pin function
DMA signal	$\overline{\mathrm{TEND}}{ }_{1}$	60	Output	Transfer end for channel 1: Internal DMAC trasnier (to channel 1) end signal. Driven LOW in synchronization with the last data transfer write cycle.
Serial I/O signal (ASCl channel 0)	TXA0	48	Output	Transfer data for asynchronous SCl channel $0: \mathrm{ASCl}$ channel 0 transfer data terminal.
	$R \times A_{0}$	49	Input	Receive data for asynchronous SCl channel 0 : ASCl channel 0 receive data terminal.
	CKAO (Commonly used with DREQ0)	50	Input/Output	Clock for asynchronous SCl channel 0 : ASCl channel 0 clock input/output terminal. This terminal is multiplexed with transfer request signal DREQO for internal DMAC channel 0 . When DMA channel 0 is oeprated in the transfer mode of "Between memory and I/O", it cannot be used as a clock output terminal.
	$\overline{\mathrm{RTS}} 0$	45	Output	Request to send for asynchronous SCl channel 0 : One of the ASCI channel 0 modem control signals. The output can be controlled to LOW and HIGH by the program.
	$\overline{\mathrm{CTS}}{ }_{0}$	46	Input	Clear to send for asynchronous SCl channel O : One of the ASCl channel 0 modem control signals. With this input, transmission can be controlled.
Serial I/O signal (ASCl channel 0)	$\overline{\mathrm{DCD}} 0$	47	Input	Data carrier detect for asynchronous SCl channel 0: One of the ASCl channel 0 modem control signals. With this input, the operation of the receiver section can be reset.
Serial I/O signal(ASCI channel 1)	TXA1	52	Output	Transfer data for asynchronous SCl channel 1: ASCl channel 1 transfer data terminal.
	RXA1	54	Input	Receive data for asynchronous SCI channel 1: ASCl channel 1 receive data terminal.
	CKA1 (Commonly used with $\mathrm{TEND}_{0 .)}$	55	Input/Output	Clock for asynchronous SCl channel 1: ASCl channel 1 clock input/output terminal. This terminal is multiplexed with internal DMAC channel 0 transfer end signal $\overline{T E N D}_{0}$. When CKA1D bit of the ASCl control register A channel 1 is set to " 0 ", it can be used as a clock input/output terminal.
	$\overline{\mathrm{CTS}} 1$ (Commonly used with RXS.)	57	Input	Clear to send for asynchronous SCl channel 1: ASCl channel 1 modem control signal. With this input, transmission can be controlled. This terminal is multiplexed with RXS signal described below. ASCI status register channel 1 CTS1E bit is used to select this terminal.
Serial I/O signal (CSI/O)	TXS	56	Output	Transfer data for serial I/O port: CSI/O serial output terminal.
	RXS (Commonly used with CTS1.)	57	Input	Receive data for serial $1 / \mathrm{O}$ port: CSI/O serial input terminal This terminal is multiplexed with CTS1, and selection is made by the program.
	CKS	58	Input/Output	Clock for serial I/O port: Used as CSI/O clock input/output terminal.
Timer	TOUT (Commonly used with A18.)	31	Output	Timer out: Timer output terminal of timer 1. Multiplexed with A18. Selection is made with TOCO and TOC1 bits of the timer control register.

Common terminal descriptions Z80180 (IC2)

Code	Terminal No.	Selection method
A18/TOUT	31	A18 is selected immediately after resetting. When either one or both of TOC1 bit and TOCO bit is/are set to "1", TOUT is selected. When the both bits are set to "0", A18 is selected again.
CKAO/DREQ ${ }_{0}$	50	CKAO is selected immediately after resetting. Either one of DM1 bit or SM1 bit of DMAC DMA mode register is set to "1", CKAO is compulsorily changed to an input terminal though it is set as an output terminal, and CKAO can be used as $\overline{D R E Q}_{0}$ terminal.
CKA1/TEND ${ }_{0}$	55	CKA1 terminal is selected immediately after resetting. When CKA1D bit of the ASCI control register A channel 1 is set to " 1 ", it can be used as TENDO terminal. When the bit is reset to " 0 ", the terminal returns to CKA1.
RXS/ CTS_{1}	57	RXS terminal is selected immediately after resetting. When CTS1E bit of ASCI status register channel 1 is set to "1", it can be used as CTS $_{1}$ terminal. In this case, however, the function of RXS input terminal is not prohibited.

LZ9FJ11 (IC5) Pin Assignment (G. A.)
OBF \curvearrowleft CMOS level unless otherwise specified.
IBF $\&$ TTL level
(However, RWE input is at CMOS level.)

Pin No.	Name	I/O BUF	Remark
1	XME	IBF	Memory Enable Signal
2	XIOE	IBF	10 Enable Signal
3	XRD	IBF	Read Control Signal
4	XWR	IBF	Write Control Signal
5	XIORD	OBF	IO Read Signal
6	XIOWR	OBF	10 Write Signal
7	XMRD	OBF	Memory Read Signal
8	XMWR	OBF	Memory Write Signal
9	XDREQ0	OBF	DMA CHO Request Signal
10	XDREQ1	OBF	DMA CH1 Request Signal
11	XINT2	OBF	Interrupt Request Signal
12	D7	IOBF	CPU Data Bus
13	D6	IOBF	CPU Data Bus
14	D5	IOBF	CPU Data Bus
15	D4	IOBF	CPU Data Bus
16	D3	IOBF	CPU Data Bus
17	D2	IOBF	CPU Data Bus
18	D1	IOBF	CPU Data Bus
19	DO	IOBF	CPU Data Bus
20	VDD	-	Power Supply
21	GND	-	GROUND
22	A18	IBF	CPU Address Bus
23	A17	IBF	CPU Address Bus
24	A16	IBF	CPU Address Bus
25	A15	IBF	CPU Address Bus
26	A14	IBF	CPU Address Bus
27	A13	IBF	CPU Address Bus
28	A7	IBF	CPU Address Bus
29	A6	IBF	CPU Address Bus
30	A5	IBF	CPU Address Bus
31	A4	IBF	CPU Address Bus
32	A3	IBF	CPU Address Bus
33	A2	IBF	CPU Address Bus
34	A1	IBF	CPU Address Bus
35	A0	IBF	CPU Address Bus
36	XROMCS	OBF	RAM Chip Select Signal
37	XRAMCS	OBF	RAMO Chip Select Signal
38	XRAMS	OBF	RAM1 Chip Select Signal
39	CLK12M	IBFS	Fundamental Clock
40	GND	-	GROUND
41	XRESET	-	Reset Signal
42	B7	IBF	Data of A/D Converted
43	B6	IBF	Data of A/D Converted
44	B5	IOBFXO	Data of A/D Converted
45	B4	IOBFXO	Data of A/D Converted
46	B3	IOBFXO	Data of A/D Converted
47	B2	IOBFXO	Data of A/D Converted
48	B1	IOBFXO	Data of A/D Converted
49	B0	IOBFXO	Data of A/D Converted
50	ADCK	IOBFC	Clock for A/D Converter
51	TEST	IOBFD	Test Pin
52	RAD7	1OBF2M	Image process RAM Data Bus
53	RAD6	IOBF2M	Image process RAM Data Bus

Pin No.	Name	I/O BUF	Remark
54	RAD5	IOBF2M	Image process RAM Data Bus
55	RAD4	IOBF2M	Image process RAM Data Bus
56	RAD3	IOBF2M	Image process RAM Data Bus
57	RAD2	IOBF2M	Image process RAM Data Bus
58	RAD1	IOBF2M	Image process RAM Data Bus
59	RADO	IOBF2M	Image process RAM Data Bus
60	GND	-	GROUND
61	VDD	-	Power Supply
62	XRWE	IOBFC	Image process RAM Read Signal
63	XROE	OBF2M	Image process RAM Write Signal
64	RA12	OBF2M	Image process RAM Address Bus
65	RA11	OBF2M	Image process RAM Address Bus
66	RA10	OBF2M	Image process RAM Address Bus
67	RA9	OBF2M	Image process RAM Address Bus
68	RA8	OBF2M	Image process RAM Address Bus
69	RA7	OBF2M	Image process RAM Address Bus
70	RA6	OBF2M	Image process RAM Address Bus
71	RA5	OBF2M	Image process RAM Address Bus
72	GND	-	GROUND
73	RA4	OBF2M	Image process RAM Address Bus
74	RA3	OBF2M	Image process RAM Address Bus
75	RA2	OBF2M	Image process RAM Address Bus
76	RA1	OBF2M	Image process RAM Address Bus
77	RAO	OBF2M	Image process RAM Address Bus
78	XPHIT	OBF6M	Synchronous Signal of CCD
79	XPHIBL	OBF	Clamp Signal
80	GND	-	GROUND
81	XPHISH	OBFR	Sample Hold Signal
82	XPHIR	OBF6M	CCD out put Charge Reset Signal
83	PHIA	OBF6M	CCD Data Transmission Clock 01
84	PHIB	OBF6M	CCD Data Transmission Clock 02
85	XGTW	OBF2M	Video Signal Peak Detection Area Signal
86	HTEN	OBF2M	Binary Halftone Select Signal
87	XPGST	OBF2M	Automatic Contrast Peak Hold Initialization
88	RTCIO	OBF2M	Select of Input/Output for RTC-LC
89	RTCCE	TOBF2M	RTC-IC Chip Select Signal
90	AUTO	OBF18M	LED ON/OFF Control Signal
91	GND	-	GROUND
92	RTCCK	OBF2M	Transmission Clock for RTC-IC
93	RTCDT	IOBF2M	Data of RTC-IC
94	XSEN4	IOBFUXI	Key Sense Signal
95	XSEN3	IOBFUXI	Key Sense Signal
96	XSEN2	IOBFUXI	Key Sense Signal
97	MAN	OBF18M	LED ON/OFF Control Signal
98	XSEN1	IOBFUXI	Key Sense Signal
99	XSENO	IOBFUXI	Key Sense Signal
100	VDD	-	Power Supply
101	GND	-	GROUND
102	LD7	IOBF	Data Bus for LCD Driver
103	LD6	IOBF	Data Bus for LCD Driver
104	AM	OBF18M	LED ON/OFF Control Signal
105	LD5	IOBF	Data Bus for LCD Driver
106	LD4	IOBF	Data Bus for LCD Driver
107	RS	IOBF	Register Select for LCD Driver
108	RW	IOBF	RNW Select for LCD Driver

FO-145A

Pin No.	Name	I/O BUF	Remark
109	E	IOBF	Enable for LCD Driver
110	XTPB	IOBFXI	Step Motor Excitement Pulse
111	XTPA	IOBFXI	Step Motor Excitement Pulse
112	TPB	IOBFXI	Step Motor Excitement Pulse
113	TPA	IOBFXI	Step Motor Excitement Pulse
114	XRPB	IOBF	Step Motor Excitement Pulse (Reserved)
115	XRPA	TOBF	Step Motor Excitement Pulse (Reserved)
116	RPB	TOBF	Step Motor Excitement Pulse (Reserved)
117	RPA	TOBF	Step Motor Excitement Pulse (Reserved)
118	CUTS	IOBFU	Sense of Cutter Sensor
119	CUTC	TOBFR	Cutter Motor Control
120	GND	-	GROUND
121	ADRSL	IBF	Select of IO Mapping Type
122	PLGON	TOBF	Plunger Control
123	LEDON	TOBF	LED Array ON/OFF Control
124	XSTRB4	OBFR	Thermal HEAD Strobe Signal
125	XSTRB3	OBFR	Thermal HEAD Strobe Signal
126	XSTRB2	OBFR	Thermal HEAD Strobe Signal
127.	XSTRB1	OBFR	Thermal HEAD Strobe Signal
128	PCLK	OBFR	Thermal HEAD Transfer Clock
129	PDATA	OBFR	Thermal HEAD Data Signal
130	LATCH	OBF	Thermal HEAD Latch Signal
131	THDT	IBFU	Thermistor Data Signal
132	STC	OBFR	Thermistor Data Conversion Signal
133	PON	TOBFR	Power Supply of Thermal Head Control
134	XMDMRST	OBFR	Modem Reset Signal
135	SDT	IOBFUX0	Secondary Dial Tone Detect Signal
136	MTOUT	IOBFUXO	Input Port (reserved)
137	DPON	IOBF18M	Dial Pulse Control Signal
138	XDRSNS	10BFUXO	Door Sensor Detect Signal
139	XPSNS	10BFUXO	Paper Sensor Detect Signal
140	VDD	-	Power Supply
141	GND	-	GROUND
142	XORGSNS	IOBFUXO	Document Sensor Detect Signal
143	XFRSNS	IOBFUXO	Front Sensor Detect Signal
144	XRHS	$10 B F U X O$	Hook Detect Signal of Handset
145	XCl	IOBFUXO	Cl Detect Signal
146	XHS2	IOBFUXO	Polarity Reversion Detect Signal 2
147	XHS 1	IOBFUXO	Polarity Reversion Detect Signal 1
148	MPXA	TOBFR	MPXA Control Signal
149	MPXB	TOBFR	MPXB Control Signal
150	MPXC	TOBFR	MPXC Control Signal
151	CML	TOBFR	CML Relay Control Signal
152	RCVMUTE	TOBFR	Receiver Mute
153	SPMUTE	TOBFR	Speaker Mute Control Signal
154	XEXHS2	IBFU	Input Port (reserved)
155	XEXHS1	IBFU	Input Port (reserved)
156	DTMF	IOBFUXO	Input Port (reserved)
157	BZ	OBFR	Buzzer Clock Output
158	LMMUTE	TOBFR	Line Monitor Mute
159	XEXIO	OBF	Extra IO Device Select Signal
160	XMDMS	OBF	MODEM Select Signal

IBF : Input buffer
IBFD : Input buffer with pull-down
IBFU : Input buffer with pull-up
IBFS : Input buffer with summit level
OBF: Output buffer
OBF2M : Output buffer (2mA)
OBF6M : Output buffer (6 mA)
OBFR : Output buffer with through rate control
IOBFUXI : I/O buffer (test input)
TOBF : Tri-state output buffer
TOBF2M : Tri-state output buffer (2mA)
TOBF18M : Tri-state output buffer (18 mA)
TOBFR : Tri-state output buffer with through rate control
IOBF : I/O buffer
IOBF2M : I/O buffer (2mA)
IOBFC : I/O buffer (CMOS I/O)
IOBFXO : I/O buffer (test output)

(2) Panel control block

The following controls are performed through G.A. according to commands from the main CPU.

- Operation panel key scanning
- Operation panel LCD display

(3) Mechanism/recording control block

- Recording control block diagram (1)

IC5 G.A. (LZ9FJ11)

Fig. 4

The recording control block is composed as shown above. The descriptions are given below:

- P/S conversion block, DMA control block, recording data control block
The recording data is transferred to the thermal head by these blocks. First, the G.A. sends $\overline{\mathrm{DREQ}}$ to the CPU. The CPU transfers the recording data to the P/S conversion block by means of DMA. The transferred data is converted into serial data and sent through the recording data control block to the thermal head together with a clock.
- Strobe width control block

This block controls strobe width which determines the printing density of recording by the thermal head. Parameters of printing frequency and temperature are inputted to the CPU to set an appropriate strobe width according to an algorithm. The printing density is maintained at a constant level in this manner.

- Dot counter control block

This block counts the number of black dots in the transferred printing data for correcton of printing density.

- Motor control block

This block supplies phase output for control of the TX and RX motors. With register setting, it controls phase switching timing of the motor.

- Thermal head temperature detecting block

This block converts the thermal head thermistor value into a digital value by conversion of voltage pulse width for correction of printing density. (Fig.5)

Fig. 5
This signal is to monitor the data of the thermistor (inside the thermalhead) to protect the thermalhead.

(4) Image signal processing block

The image signal processing block is composed of the following
(1) CCD sensor drive block (LZ9FJ11 (IC5)).
(2) A/D converter block (TLS1019 (IC3)).
(3) Binary coding processing block

- LZ9FJ11
- W2465S-70LL (IC7)

Descriptions on each block are given below:

1) $C C D$ drive block

The clock necessary for CCD drive is generated in LZ9FJ11.

- $\phi 1$ (Transmission clock)
- $\phi 2(=\overline{\phi 1}) \quad$ (Transmission clock)
- $\phi R \quad$ (Output buffer reset clock)
- $\phi T \quad$ (Line synchronizing signal)

2) A/D Converter

A 6-bit, high-speed A/D converter TLS1019 (IC3: 30-pin SSOP) is used to supply A/D-converted digital video signals to the binary coding processing block according to the clock signal from LZ9FJ11.

3) Binary coding processing block

Digital video signals inputted in 6-bit accuracy by gate array LZ9FJ11 (IC5) which incorporates various algorithms required for binary coding, and RAM (IC7) which stores data necessary for processing are converted into binary data, and P/S-converted, and DMA-transmitted to the line memory of the main CPU.
The algorithms for binary coding in the processing block are as follows:

- Shading correction
- OR process (in the standard mode)
- Focus correction
- Auto contrast process
- Intermediate halftone expression process

(5) Modem (R96SHF) block

introduction

The Rockwell R96SHF MONOFAX modem is a synchronous 9600 bits per second (bps) half-duplex modem with error detection and DTMF reception. It has low power consumption and requires only a single +5 V DC power supply. The modem is housed in a single VLSI device package.
The modem can operate over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).
The R96SHF is designed for use in Group 3 facsimile machines. The modem satisfies the requirements specified in CCITT recommendations V.29, V. 27 ter, V. 21 Channel 2 and T.4, and meets the binary signaling requirements of T. 30 .
The modem can operate at $9600,7200,4800,2400$, or 300 bps , and also includes the V. 27 ter short training sequence option.
The modem can also perform HDLC framing according to T. 30 at $9600,7200,4800,2400$, or 300 bps.
The modem features a programmable DTMF receiver and three programmable tone detectors which operate concurrently with the V. 21 channel 2 receiver.
The voice mode allows the host computer to efficiently transmit and receive audio signals and messages.
The modem is available in either a 100 -pin plastic quad flat pack (PQFP) or a 64 -pin quad in-line package (QUIP).
General purpose input/output (GPIO) pins are available for host assignment in the 100-pin PQFP.
The modem's small size, single voltage supply, and low power consumption allow the design of compact system enclosures for use in both office and home environments.
MONOFAX is a registered trademark of Rockwell International.

FEATURES

- Group 3 facsimile transmission/reception
- CCITT V. 29, V. 27 ter, T.30, V. 21 Channel 2, T. 4
- HDLC Framing at all speeds
- V. 27 ter short train
- Concurrent DTMF, FSK, and tone reception
- Voice mode transmission/reception
- Half-duplex (2-wire)
- Programmable maximum transmit level:

0 dBm to -15 dBm

- Programmable transmit analog attenuation:

0 dB to 14 dB in 2 dB steps

- Receive dynamic range: 0 dBm to -43 dBm
- Programmable dual tone generation
- Programmable tone detection
- Programmable turn-on and turn-off thresholds
- Programmable interface memory interrupt
- Diagnostic capability
- Allows telephone line quality monitoring
- Equalization
- Automatic adaptive equalizer
- Fixed digital compromise equalizer
- DTE interface: two alternate ports
- Selectable microprocessor bus (6500 or 8085)
- CCITT V. 24 (EIA-232-D compatible) interface
- TTL and CMOS compatible
- Low power consumption: 275 mW (typical)
- Single Package
- 100-pin PQFP
- 64-pin QUIP
- Single +5 VDC power supply
- Software compatible with R96MFX, R96EFX, R96DFX, and R96VFX modems

R96SHF (IC1) Hardware Interface Signals
Pin Signals - 100-Pin PQFP

Pin No.	Signal Name	I/O Type
1	GP03	IANOB
2	GP04	IA/OB
3	GP05	IA/OB
4	GP06	IANOB
5	GP07	IA/OB
6	OVD2	GND
7	OVD2	GND
8	D7	IA/OB
9	D6	IA/OB
10	D5	IANOB
11	D4	IANOB
12	D3	IA/OB
13	D2	IANOB
14	D1	IANOB
15	D0	IANOB
16	OVD2	GND
17	OVA	GND
18	RAMPIN	R
19	NC	
20	NC	
21	OVA	GND
22	+5VD2	PWR
23	OVD1	GND
24	SWGAINI	R
25	ECLKIN1	R
26	SYNCIN1	R
27	NC	
28	NC	
29	NC	
30	OVA	GND
31	NC	
32	NC	
33	NC	
34	DAIN	R
35	ADOUT	R
36	BYPASS	IC
37	RCVI	R
38	TXLOSS3	IC
39	TXLOSS2	IC
40	TXLOSS1	IC
41	NC	
42	NC	
43	OVA	GND
44	TXOUT	AA
45	RXIN	AB
46	+5VA	PWR
47	OVA	GND
48	AGD	R
49	AOUT	R
50	OVD1	GND
51	NC	
52	$\overline{\mathrm{IRQ}}$	OC
53	WRITE-R/ \bar{W}	IA
54	$\overline{\text { CS }}$	IA
55	READ- $\mathrm{\phi}^{2}$	IA
56	RS4	IA
57	RS3	IA
58	RS2	1 A
59	RS1	IA

Pin No.	Signal Name	I/O Type
60	RSO	1 A
61	GP13	$1 \mathrm{~A} / \mathrm{OB}$
62	NC	
63	GP11	IA/OB
64	$\overline{\text { RTS }}$	IA
65	EN85	R
66	OVD2	GND
67	PORI	ID
68	XTLI	R
69	XTLO	R
70	XCLK	OD
71	YCLK	OD
72	+5VD1	PWR
73	DCLKI	R
74	SYNCIN2	R
75	GP16	IA/OB
76	GP17	IA/OB
77	OVD2	GND
78	$\overline{\text { CTS }}$	OA
79	TXD	1 A
80	OVD2	GND
81	OVD2	GND
82	DCLK	OA
83	EYESYNC	OA
84	EYECLKX	OA
85	EYECLK	OA
86	EYEX	OA
87	ADIN	R
88	DAOUT	R
89	OVD2	GND
90	EYEY	OA
91	GP21	IANB
92	OVD2	GND
93	GP20	IANOB
94	GP19	IA/OB
95	RXD	OA
96	$\overline{\text { RLSD }}$	OA
97	OVD2	GND
98	RCVO	R
99	SWGAINO	R
100	GP02	IANOB

Notes:

1. $\mathrm{NC}=\mathrm{No}$ connection; leave pin disconnected (open).
2. I/O Type: Digital signals: see Table 9;

Analog signals: see Table 10.
3. $\mathrm{R}=$ Required modem inter-connection; no connection to host equipment.
[3] Circuit description of TELLIU PWB
(1) TELLIU block operational description

1) Block diagram

2) Circuit description

The TEL/LIU PWB is composed of the following 15 blocks.

1. Surge protection circuit
2. On-hook status detection circuit
3. Dial pulse generation circuit
4. CML relay
5. Cl detection
6. Control signa
7. Speaker amplifier
8. Adjustment of ringer voiume
9. Speech circuit
10. Signal detection
11. Sensor circuit
12. Matching transformer (T2)
13. DTMF Pseudo-ringer
14. Power supply and bias circuits
15. Signal selection

3) Block description

1. Surg protection circuit

This circuit protects the circuits from the surge voltage occurring on the telephone line.

- The AR1 protects the circuits from the 400 V or higher line surge voltages.
- The VA2 and VA3 protect the circuits from the 470 V or higher vertical surge voltages.
- The ZD2 and ZD3 control the voltages generated on the secondary side of matching transformer to 3 V .

2. Hook status detection circuit

The hook status detection circuit detects the Status of hook switch (RHS) of Built-in telephone, and the status of hook of telephone externally connected.

- The status of on-hook switch (RHS) is determined from the logical level of $\overline{\mathrm{RHS}}$ signal.
RHS LOW: ON HOOK
$\overline{\mathrm{RHS}}$ HIGH: OFF HOOK
- External telephone hook status detection circuit ($\overline{\mathrm{HST}}$)

This circuit comprises the photo-coupler PC1, resistors R53 and R60, Zener diodes ZD6 and ZD7.
When an external telephone is connected and enters the on-hook mode, the LED of photo-coupler PC1 emits light and the light receiving element turns on. The status signal $\overline{\text { HS1 }}$ is input to the pin 147 of gate array (IC5: control PWB).

HS1 LOW: EXT. TEL OFF HOOK

HS1 HIGH: EXT. TEL ON HOOK

3. Dial pulse generation circuit

The pulse dial generation circuit comprises the photo-coupler PC 2 , polarity guard REC1, and resistor R61.
The photo-coupler PC2 shunts the line current using the DP signal before transmitting the dial signal, then turns off the CML relay.
After the puise dial signal is transmitted by turning on/off the DP signal, the CML relay is turned on again.

4. CML relay

The CML relay switches over connection to the matching transformer T1 while the FAX or built-in telephone is being used.

5. Cl detection

The Cl detection circuit detects the Cl signals of 15.3 Hz to 68 Hz . A Cl signal, which is provided to the photocoupler PC3 through the C51 ($0.82 \mu \mathrm{~F}$), R54 (22 K), and ZD11 when the ring signal is inputted from the telephone line, is filtered by the R47 and C45, and then transmitted to the control PWB through the IC4 (ULN2003).

6. Control signal

- SPMUTE which controls the speaker amplifier IC mute is directly connected to the CPU output port.
- DP which controls the dial pulse is connected through IC4 to the gate array output port.
- TELMUTE which controls speech IC (IC1) mute is connected through IC4 to the gate array output port.
- OHRL which controls on-hook photo coupler (PC4) is connected through IC4 to the gate array output port.
- LEDON which controls is connected through IC5 to the gate array output port.
- CML which controls the line selection relay (CML) is connected through IC5 to the gate array output port.
- VTHON which controls the thermalhead power relay (THL) is connected through IC5 to the gate array output port.
- Cl which drives the Cl detection photo coupler (PC6) is connected through IC6 to the gate array input port.
- $P \bar{T}$ which judges dial pulse or DTMF signal is connected through IC5 to the gate array input port.
- HSI which detects hook of external TEL is connected through PC5 to the gate array input port.
All are controlled by the CPU.

7. Speaker amplifier

The speaker amplifier monitors the line under the on-hook mode. outputs the buzzer sound generated from the gate array (IC: control PWB), ringer sound, DTMF generated from the modem, and line sound.
The buzzer volume is fixed. However, the volume of other sounds can be continuously adjusted using the volume control VR1.

8. Adjustment of ringer volume

The ringer volume can be continuously adjusted using the volume control VR1.

9. Speech circuit

The speech circuit is composed of transmission amplifier, reception amplifier, IC (IC1 MC34114) including side sound control and capacitors and resistors.
The speech IC (IC1) has the loop length equalizing function. The gain of the loop current is converted to AGC.
The range of loop current for AGC operation is set by R1 (43Ω 1 W) and R102 (13 2). It largely affects the DC characteristics of this circuit.
The microphone amplifier receives balance differential input to reduce RFI problem. The transmission gain is set by P103 ($47 \mathrm{~K} \Omega$). The input impedance is $20 \mathrm{~K} \Omega$.
The reception gain of the reception amplifier is set by R106. A receiver of $150 \Omega-200 \Omega$ can be connected.
In addition, DTMF signals for dialing and pseudo-ringer singals generated in TELFAX auto selection are formed in this circuit.
The process is: Signals sent from the Modem (IC1: control PWE) are passed through the matching transformer (T 1) to R105 (20K), where they are gain-controlled. Then they are inputted to |C1 pin 10, corrected and delivered to the TEL line.
At that time, the CML relay turns on the photo coupler PC. 4 (PC851) in the TEL side to supply power to the speech IC.
The kind of dialing (DTMF or puise) is selected with PC1 (HIGH for pulse, LOW for DTMF)
This information is recognized by the CPU through photo coupler (PC1) and gate array (IC5: control PWB).

10. Signal detection

10-1. Cl signal detection section
The Cl signal detection section detects the Cl signal (16 Hz) for automatic reception.
When Ring signal is inputted from the TEL line, its $D C$ component is removed by C49 (1.8uF/250V) and its AC component only is passed. Light emitting element of photo coupler (PC4) is transmitted to the light reception side. Cl signal is amplified and reversed by IC6 and outputted and the CPU judges whether it is Cl or not.
10-2. External TEL hook detection circuit
This circuit is composed of photo coupler (PC5), R60, R61, C54, ZD6, and ZD7. When an external TEL is connected, its hook state is detected by the CPU with this circuit.
When the external TEL is in off-hook state, LED of PC5 lights up to turn on the light receiving side, and signal amplified and reversed by IC6 (ULN2003) is inputted to gate array (IC5: control PWB) pin 147.
10-3. Remote signal (DTMF)
External TEL switches to automatic reception mode $(5, *, *)$.
The remote signal is detected through the following route by the mode.

FO-145A

11. Sensor circuit

The recording paper sensor (PSNS) which senses the presence of recording paper uses a reflection type sensor. The original sensor (ORGSNS) which senses the presence of an original, and the front sensor (FRSNS) which senses the lead edge of an original use transmission type photointerrupters. The door sensor (DRSNS) which senses open/close of the door uses a microswitch. The outputs are connected to the gate array input port to be sent to the CPU.
When there is no original, the actuators of the front sensor (FRSNS) and the original sensor (ORGSNS) interrupt the light path of the photointerrupter to turn off the phototransistor in the light receiving side. The detection levels become HIGH.
When there is an original, the actuators come away off from the light path to turn on the phototransistor in the light receiving side. The detection level becomes LOW.
For the recording paper sensor (PSNS), when there is recording paper, the phototransistor in the light receiving side is ON and the detection level is LOW. When there is no recording paper, the phototransistor in the light receiving side is OFF and the detection level is HIGH .
The door switch (DRSNS) is at HIGH level when the recording paper cover is open, and at a LOW level when the recording paper cover is closed.

12. Matching transformer (T2)

The matching transformer performs electrical insulation from the telephone line and impedance matching for transmitting the TEL/FAX signal.

13. DTMF/pseudo-ringer

The signal is formed in the Modem, amplified by IC1 (control PWB), and inputted through matching transformer T1 to the speech IC (IC1) pin 10 R105 (20K) connected to pin 10 is the input gain adjustment resistance.
The signal is then rectified by IC1 and outputted to the line.

14. Power supply and bias circuits

The voltages of $+24 \mathrm{~V},+12 \mathrm{~V}$, and +5 V are supplied from the power unit through the connector CNPW. The IC2 of operational amplifier generates 6 V bias voltage and supplies it to the IC3, IC6.

15. Signal selection

The following signals are used to control the transmission line of TELFFAX signal. For details, refer to the signal selector matrix table. (See page 5-14)

- TLMUTE: Controls the mute of handset voice transmission signal.
- LM MUTE: Mutes the voice reception signal while the ringer is sounding.
- SP MUTE: Controls the mute of speaker amplifier.
- MPX A: Switches over the gain of reception amplifier.

L: Amplifier gain decreased
H: Amplifier gain increased

- MPX B: Switches over the speaker amplifier input signal.

H: Buzzer selected
L: Voice reception signal or ringer selected

- MPX C: Mutes the transmission drive amplifier.
H : Selected when the telephone is being used or when the FAX signal is being transmitted
L : Selected when the FAX signal is being received

Signal selector matrix table

		CML	MPX A	MPX B	MPX C	TL MUTE	SP MUTE	OHRL	LM MUTE
Fax signal sending		1	0 (X1)	0 (Y1)	1 (Z0)	1	1	0	0
Fax signal receiving		1	0 (X1)	0 (Y1)	0 (Z1)	1	1	0	0
Off hook dial	before and after	0	0 (X1)	1 (Y0)	1 (Z0)	0	1	0	1
	during DP dial	0	0 (X1)	1 (YO)	0 (Z1)	0	1	0	1
	during PB dial	0	0 (X1)	1 (Y0)	1 (Z0)	1	1	0	1
On hook dial	before and after	0	1 (X0)	0 (Y1)	D.P $0(Z 1)$	1	0	1	0
					DTMF 1 (Z0)				
	during DP dial	0	1 (X0)	0 (Y1)	0 (Z1)	1	0	1	0
	during PB dial	0	0 (X1)	0 (Y1)	1 (Z0)	1	0	1	0
Auto dial	before/after	0	0 (X1)	1 (YO)	D.P $0(Z 1)$	1	1	1	1
					DTMF 1 (Z0)				
	300bps check	1	0 (X1)	1 (YO)	0 (Z1)	1	1	0	1
	during DP dial	0	0 (X1)	1 (YO)	0 (Z1)	1	1	1	1
	during PB dial	0	0 (X1)	1 (YO)	1 (Z0)	1	1	1	1
Ringer sound		0	0 (X1)	$0(\mathrm{Y} 1)$	0 (Z1)	1	0	0	1
Buzzer/Key sound		0	1 (X0)	$1(\mathrm{YO})$	0 (Z1)	1	0	0	1
Hold		1	0 (X1)	0 (Y1)	0 (Z1)	1	0	0	0
Answering machine mode		0	1 (X0)	1 (YO)	0 (Z1)	1	1	0	1
Line monitor	Sending	1	0 (X1)	$0(\mathrm{Y} 1)$	1 (Z0)	1	0	0	0
	Receiving	1	0 (X1)	0 (Y1)	0 (Z1)	1	0	0	0
Stand-by		0	1 (X0)	1 (YO)	0 (Z1)	1	1	0	1
Off hook/Key buzzer		0	0 (X1)	1 (YO)	1 (Z0)	0	0	0	1
On hook/Key buzzer		0	1 (X0)	1 (YO)	0 (Z1)	1	0	1	0
CNG detection		0	1 (X0)	1 (YO)	0 (Z1)	1	1	1	1
Pseudo ringer		0	0 (X1)	0 (Y1)	1 (Z0)	1	0	1	0
CNG sending		1	0 (X1)	1 (YO)	1 (Z0)	1	1	0	1

[4] Circuit description of power supply PWB

1. Block diagram

Fig. 1. Block diagram

2. General description

The input voltage is 187 V AC -276 V AC conforming to UL standards. The outputs are $+24 \mathrm{~V}(\mathrm{VM}),+5 \mathrm{~V},+12 \mathrm{~V}$. The overvoltage protection function for protection of the load in case of power abnormality and the overcurrent protection function for protection of the power supply itself from overload are added.

3. Operational description

When 230 V/AC power is supplied, it is passed through a noise filter to the rectifier section where it is smoothed to about 300 V then supplied to the inverter section. The inverter section employs one-transistor ON/OFF self-excited invertor (R.C.C. system) and a stable DC voltage is supplied to the secondary side.
The operation of each section is described below:

3.1. Invertor section

When the voltage across R4 reaches the gate ON voltage through R5, R6, and R4, Q1 begins to turn ON, flowing a current from pin1 of T1 primary winding to pin3. Then a voltage is generated from pin5 of auxiliary winding to pin4, turning Q1 gate ON completely. The drain current increases linearly to store energy in the primary winding. However, voltage across R3 turns ON Q2 thorough R9 when the drain current reaches a certain level. As a result, Q1 gate voltage falls below the threshold voltage (about 4V) of the gate and Q1 turns off. Simultaneously when Q1 turns off, the energy stored in the primary winding is induced in the secondary winding to bias the rectifier diodes D4, D5, and D6 forwardly, smoothing each output capacitor. Thus a DC voltage is obtained.

3.2. Control section

(1) $+24 \mathrm{~V}(\mathrm{VM})$ control

A voltage is generated in the secondary side by repeated operations of 3.1, and the output in the secondary side is divided by R14, VR1, and R15 to be inputted to Q4. The divided voltage is adjusted to about 6.2V by VR1. Q4 always monitors the divided output voltage. When the output voltage exceeds +24 V , the divided voltage also exceeds 6.2 V and Q 4 judges it as an increase in the output voltage. Then photocoupler PC1 is lit through R13 to turn on the transistor in the light receiving side, supplying a current to the base of Q3, turning off Q1. (The current which is to be passed through the additional line, R9, and C8 to R4 is bypassed by Q3). Resultantly, ON time of Q1 is shortened and the energy stored in the primary winding is decreased, limiting the increase in the output voltage. When the output voltage begins to decrease, the light quantity of PC1 is decreased to lengthen the ON time to $\mathrm{Q1}$. As a result the energy in the primary winding is increased to compensate for the decrease in the output voltage.
The negative feedback control is repeated to stabilize the output voltage.
(2)
$+5 \mathrm{~V},+12 \mathrm{~V}$ control
The outputs of +5 V and +12 V are stabilized by the three-terminal regulator ICs (IC1 and IC2). The overcurrent protection function protects the regulator ICs themselves.

3.3. Overcurrent protection function

When the output current in the secondary side increases to become an overcurrent or short R2/R4 detects the drain current to turn on Q2. The gate voltage of Q1 is controlled to shorten ON time of Q1 to protect the circuit from the overcurrent.

3.4. Overvoltage protection function

When the output voltage is abnormally increased and ZD3 zener voltage exceeds about $30 \mathrm{~V}, \mathrm{ZD3}$ is shorted to operate the same procedure as the overcurrent protection function. To reset, turn off the AC switch, remove the cause, and replace ZD3 with a new one.

3.5. High temperature protection circuit

Thermal fuse F3 included in the power circuit is blown when the surface temperature of rectifier D1 exceeds about 115 degrees Centigrade. (about $239^{\circ} \mathrm{F}$)

3.6 Rush current limiting circuit

When AC power is supplied, a rush current flowing through capacitor C5 may blow fuse F1 and damage the circuit. To prevent this, the power thermistor TH 1 is provided to limit the rush current.

3.7. Line filter

To protect against external noises and noises generated in the power circuit, the line filter is composed of L1, L2, C1, C2, C3, and C4 to reduce noises.

- When the overcurrent protection circuit works

[5] Circuit description of CCD PWB

The CCD board picks up optical information from the document, converts it into an electrical (analog) signal and transfers it to the control boad.
(1) Block diagram

Fig. 8

(2) Description of blocks

1. $C C D$

The TCD1206SUP is a highly sensitive charged coupled image sensor that consists of 2160 picture elements.
Receiving four drive signals ($\phi T, \phi 2, \phi 1$, and ϕR) from the control board, the tranferred photoelectric analog signal OS is impedance converted, and the signal VO is supplied to the control board.

2. Waveforms

1. $\phi 1, \phi 2(=\overline{\phi 1})$ signals within the control board

2. $O S \phi$

Fig. 9

CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT

Control PWB parts layout (Bottom side)

Power supply PWB parts layout

CHAPTER 7. OPERATION FLOWCHART

[1] Protocol

7-1

[2] Power on sequence

CHAPTER 8. OTHERS

[1] Service tools

1. List

NO.	PARTS CODE		DESCRIPTION	QTY
RAICE				
1	CPWBS2715SCO1	Extension board unit		1
2	UKOGM2 028 SCZZ	Optical adjustment jig	BZ	

Extension board unit

NO.	PARTS CODE	DESCRIPTION	Q'TY	PRICE RANK
1	QCNW-4283SCZZ	CABLE (CNPN2)	1	AS
2	QCNW-3867SCZZ	CABLE (CNPLG2)	1	AE
3	QCNW-3868SCZZ	CABLE (CNLED2)	1	AE
4	QCNW-3869SCZZ	CABLE (CNSP2)	1	AE
5	QCNW-3870SCZZ	CABLE (CNMT2)	1	AH
6	QCNW-4112SCZZ	CABLE (CNCCD2)	1	AG
7	QCNW-3872SCZZ	CABLE (CNTH2)	1	AP
8	QCNW-3873SCZZ	CABLE (CNSNS)	1	AZ
9	QCNW-3874SCZZ	CABLE (CNCUT2)	1	AG
10	QCNW-3882SCZZ	CABLE (CNPS2)	1	AF
11	QCNCM2389SC1H	CONNECTOR 18 pin (CNPN1, CNPN2)	2	AE
12	QCNCM2401SCOB	CONNECTOR 2 pin (CNSP1, CNSP2)	2	AA
13	QCNCM7014SCOB	CONNECTOR 2 pin (CNLED1, CNLED2 CNPL1, CNPL2)	4	AD
14	QCNCM7014SCOC	CONNECTOR 3 pin (CNPS1, CNPS2)	2	AA
15	QCNCM7014SCOD	CONNECTOR 4 pin (CNCUT1, CNCUT2)	2	AB
16	QCNCM 7014 SCOF	CONNECTOR 6 pin (CNMT1, CNMT2)	2	AB
17	QCNCM7014SC0G	CONNECTOR 7 pin (CNSNS)	1	AB
18	QCNCM7014SCOG	CONNECTOR 7 pin (CNCCD1, CNCCD2)	2	AB
19	QCNCM7014SC1C	CONNECTOR 13 pin (CNTH1, CNTH2)	2	AC
20	QPWBS2715SCZZ	EXTENSION BOARD (WITHOUT PARTS)	1	BV
21	QSW-M2184SCZZ	Cover switch (DRSNS)	1	AD
22	QSW-Z2206SCZZ	Hook switch (HSW)	1	AE
23	VHPSG206/II-1	(PSNS, FRSNS, ORGSNS)	3	AE
24	VRD-RC2EY221J	RESISTOR (1/4W 220 $\pm 5 \%$) (R1, R2, R3)	3	AA
25	XHBSD30P05000	Screw	3	AA
26	LPLTM2704XHZZ	Bottom plate	1	AY

2. Description

2-1. Extension board unit

1. Remove the TEL/LIU PWB, control PWB and Power Supply PWB from this unit, and mount the extension board unit instead.

- Before connecting the wiring to the extension board unit, set the test PWB switches to the fixed position.

2. The setting is as follows.

2-2. Scan optical system adjustment

(1) Outline

The adjustment procedures of the scan optical system are described below:

(2) Adjustment procedures

(1) Switch off the machine and disconnect the AC power cable from the wall socket.
(2) Fully open the upper cabinet, remove the fixing screws of the recording paper tray and remove the recording paper tray. In order to perform a focus adjustment, remove the optical system unit from the frame.
(3) Disconnect the main pwb from the TELLLIU pwb.
(4) Connect your oscilloscope channel 1 to the VID signal (Refer Pin 1 of Connector CNCCD on the main pwb) and channel 2 of your oscilloscope to ϕT signal (Refer Pin 4 of connector CNCCD on the main pwb). Connect the earth clips of either probe to AG ground as shown. Set the trigger to channel 2.

VID CNCCD-1
©T CNCCD-4
VG CNCCD-3
(5) Re-connect the main pwb to the TELLIU pwb and connect these circuit boards to the connectors on the chassis.
(6) Re-assemble up to and including the recording paper tray to the main chassis and close upper cabinet.
(7) Plug the AC power cable into the wall outlet and turn the fax machine on.
(8) Insert a test chart in the document hopper and execute the CCD Adjust Mode diagnostic. Press the START key to enable local copy until approximately one fifth of the page has been copied, then press the STOP key to enable the CPU wait state.
(9) Fully open the upper cabinet and remove the recording paper tray.
(10) Install the scan adjustment jig to the optical system unit, so that the pattern surface is on the lower side.
(11) Fit the pins of the scan adjustment jig to the holes of the optical system frame.
(11) Lightly loosen the red screws of the CCD pwb and obtain the VID signal waveform in synchronization with ϕT signal waveform. Adjust the CCD pwb positioning to obtain the waveform as shown below.

CCD waveform

(13) After completing the CCD adjustment, tighten the two red screws on the CCD pwb and apply screw locking material to prevent the CCD pwb from moving.
(14) Assemble the recording paper tray and fixing screws.

[2] IC signal name

CONTROL P.W.B. UNIT

IC1: VHiR96SHF//-1 (R96SHF)

Refer to the table on p. 5-10.

IC3: VHiTLS1019/-1 (TLS1019)

IC2: VHiZ80180FSC6 (Z80180)

Refer to the tables on p. 5-3 through 5-5.
IC4: VHiLH5160N10Y (LH5160N-10Y)

Pin name	Signal
A0~A12	Address input
CE1/CE2	Chip enable
WE	Write enable
OE	Write enable
I/O1-I/O8	Data I/O
VCC	Power source
GND	Ground
N.C.	No connection

IC7: VHiW2465S70LL (W2465S-7LL) VHiLH5268TH10 (LH5268TH-10)

SYMBOL	DESCRIPTION
AO-A12	Address inputs
$\overline{/ / O 1-I / O 8}$	Data Inputs/Outputs
$\overline{\mathrm{CS1}, \mathrm{CS} 2}$	Chip Select Inputs
$\overline{\mathrm{WE}}$	Write Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VDD	Power Supply
VSS	Ground
NC	No Connection

C5: VHiLZ9F11//-1 (LZ9FJ11)
Refer to the tables on p. 5-6 and 5-7.

IC6: VHiLH5116NA10 (LH5116NA-10)

IC8: VHiULN2003ANS (ULN2003)
$1 \mathrm{C} \quad 2 \mathrm{C} 3 \mathrm{C} \quad 4 \mathrm{C} \quad 5 \mathrm{5C} \quad 6 \mathrm{C} \quad 7 \mathrm{C} \quad \mathrm{COM}$

IC10: VHiTA7291PV-1 (TA7291PV)

IC101: VHiNJU6355E-1-(NJU6355EM)

IC9: VHi27C01012TI (TMS27C010) EP-ROM

vpp 1	32 VCC
At6 2	31 PGM
A15 3	30 NC
A12 4	29. A 14
A7 5	28. A13
$A 66$	27) A 8
A5 7	26.19
A4 8	25 A11
A3 9	$24 \bar{G}$
A2 10	23 A10
A1 11	22 E
A0 12	$21 \mathrm{DQ8}$
DQ1 13	20 DQ7
DQ2 14	19 DQ6
DQ3 15	18 DQ5
GND 16	17 DQ4

Pin name	Signal
$A 0 \sim A 16$	Address input
$\overline{\mathrm{E}}$	Chip enable
$\overline{\mathrm{G}}$	Output enable
GND	Ground
NC	No connection
$\overline{\text { PGM }}$	Program
DQ1 DQ8	Data output (Program input)
VCC	+5 V power
VPP	+12.5 V power (*)

(*) Only in the program mode

IC100: VHiNJM2904M-1 (NJM 2904M)
IC102: VHiNJM4558MF-(NJM4558M) IC104: VHiNJM2903M/-(NJM2903M)

1. A OUTPUT
2. A-INPUT
3. A+ INPUT
4. V-
5. B+INPUT
6. B-INPUT
7. B OUTPUT
8. V_{+}

IC103: VHiPST591CMT1-(PST591C)

TEL/LIU P.W.B. UNIT

IC1~IC4: VHiNJM4558D-1 (NJM4558D) IC7: VHiNJM2903D-1 (NJM2903D)

IC6: VHiNJM2113D-1 (NJM2113D)

1. A OUTPUT
2. A-INPUT
3. $A+$ INPUT
4. V -
5. B+ INPUT
6. B-INPUT
7. B OUTPUT
8. V_{+}

SHARP

model FO-145

CONTENTS

1 Cabinet, etc.
(2) Upper cabinet

3 Document guide upper

4 Drive unit

5 Optical unit
6. Packing material \& Accessories

7 Control PWB unit

8 TEL-Liu PWB unit

9 Power supply PWB unit

10 CCD PWB unit

50 Hardware parts

- Index

Because parts marked with " \triangle " is indispensable for the machine safety maintenance and operation, it must be replaced with the parts specific to the product specification.

FO-145ACabinet, etc.

1 Cabinet, etc.

NO.	PARTS CODE	PRICE RANK	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION
1	CCNW-4350XH01	A A		C	Panel cable
2	CPNLH2350×H10	BM	N	D	Upper cabinet ass'y
3	GCABB $2247 \times H \times A$	B A		D	Lower cabinet
5	MSPRP $2687 \times H Z Z$	AC		C	Pinch spring 2
6	NBRGP2138 2 HZZ	A D		C	Bearing
7	NROLP $2249 \times H Z Z$	A E		C	Pinch roller 2
8	MLEVP2172 XHZA	AC		C	Sensor lever
9	MSPRC $2727 \times H Z Z$	A C		C	Sensor lever spring
10	GDAi-2067XHZE	A V		C	Hand set stand
12	MSPRC 2719 XHZZ	A A		C	Spool spring
14	PGiDM2289 XHZZ	A B		C	Spool guide
15	DCEKC289GXHZZ	CA		E	Control PWB unit
16	DCEKL419AXH04	B T		E	TEL/Liu PWB unit
17	QACCL762ASCZZ	A W		B	AC cord ass'y
18	GLEGG2036 2 HZZ	A A		C	Rubber foot
20	LPLTM2704 ${ }^{\text {PHZ }}$	A T		C	Bottom plate
21	RDENT2085 X HZZ	B A		E	Power supply PWB unit
26	NGERH2204 ${ }^{\text {NHZ }}$	AM		C	Paper feed gear
27	NROLR2293×HZZ	AM		C	Paper feed roller
28	NGERH2205 2 HZA	A F		C	Transfer gear 1
29	NROLR2294×HZZ	A R		C	Transfer roller
30	LBSHP2057XHZZ	A B		C	Platen stopper
31	NGERH2259 X HZA	A C	N	C	Platen gear
32	NROLR2296×HZZ	A C		C	Platen roller
33	PSHEZ3031 X HZZ	A A		C	Jack sheet
36	CCNW-4268×H01	A E		C	Speaker ass'y
37	LBNDJ2006×HZZ	A A		C	Band
38	MLEVP2171XHZZ	AC		C	Lever, document switch
39	MLEVP2173XHZZ	A C		C	Lever front sensor
40	MSPRC2544 ${ }^{\text {SHZ }}$	A B		C	Return spring 1, sensor lever
41	MSPRC $2689 \times \mathrm{HZZ}$	A C		C	Brake spring
42	NGERH2260 X HZA	A C	N	C	Brake gear
44	GCOVA2341×HZA	AK		D	Rear cover
45	MROD-2004 XHZA	A C		C	Hook switch lever
47	RCORF2064 X HZZ	A F	N	B	Core
48	GLEGG2058SCZA	A D		C	Rubber foot
52	PSPAZ 2199 XHZ	A Q		C	Spacer
53	PSHEZ3093×HŌG	A F		C	Sheet
54	PSHEZ3086XHZZ	A R		C	Insulate sheet
55	PSHEZ3115 XHZZ	A D	N	C	Insulate sheet
56	TLABS $3523 \times H Z Z$	A A		D	NZ.approval label
57	TLABS $3522 \times \mathrm{HZZ}$	A A		D	Austel label
58	TLABZ3418×HZZ	A A		D	TEL.explanation label
			-		
		-			

FO-145A
2 Upper cabinet

3 Document guide upper

2. Upper cabinet

NO.	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \\ & \hline \end{aligned}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$	DESCRIPTION
1	DCEKP363AXH02	BG	N	E	Panel PWB unit
2	GCABA $2245 \times H Z E$	A 2	N	D	Upper cabinet
3	HPNLH2350 ${ }^{\text {a }}$ (${ }^{\text {a }}$	A C		D	Decoration panel
4	JBTN-2085 ${ }^{\text {d }}$ HZA	AR		C	12 key
5	JBTN-2086×HZA	$A Q$		C	Direct key
6	JBTN-2088×HZA	AP		C	Stop key
7	JBTN-2127XHZA	AF		C	Start key
8	JBTN-2128×HZA	AD		C	Mode key
9		$A C$		C	Reiease knob
10	LPLTP2699xHZZ	$A C$		C	Plate, document guide upper
11	MSPRC2641XHZZ	$A B$		C	Hopper spring
12	NGERP2206×HZZ	$A E$		C	Pinion gear
13	PGiDP2404XHZA	$A X$		C	Hopper guide, right
14	PGiDP 2405 XHZA	A X		C	Hopper guide, left
15	PSHEZ3034XHZZ	$A C$		C	Protect sheet
	(Unit)				
901	CPNLH2350XH10	BM	N	D	Upper cabinet ass'y

3 Document guide upper

4 Drive unit

5 Optical unit

6 Packing material \& Accessories

4 Drive unit

5 Optical unit

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
1	DCEKD281AXH02	B V		E	CCD PWB unit
2	LFRM-2147XHYA	A V	N	C	Optical frame
3	MSPRP2512 ${ }^{\text {a }}$ HZZ	AK		C	Lens spring
4	MSPRP2618XHZZ	A D		C	Mirror spring 1
5	MSPRP2619XHZZ	A D		C	Mirror spring 2
6	PGLSP2043XHZZ	AK		C	Reader glass
7	PLNS-2043 ${ }^{\text {PHZZ }}$	AU		B	Lens
8	PMIR-2061 ${ }^{\text {P }}$ HZZ	AH		C	Mirror 1
9	PMiR-2062 ${ }^{\text {PHZZ }}$	AM		C	Mirror 2
10	PSHEZ2879XHZZ	AK		C	Shading sheet
11	PSHEZ2915XHZZ	A Y		C	Dustproof sheet
12	QCNW-4273 ${ }^{\text {PHZZ }}$	AE		C	LED cable
13	VHPSNK08A24-1	A Z		B	Photo transistor
14	PCUSS2075 ${ }^{\text {PHZ }}$	A A	N	C	Cushion 1
15.	PCUSS2076XHZZ	A A	N	C	Cushion 2

6 Packing material \& Accessories

NO.	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION
1	PHŌP-2080XHZZ	A F		D	Extention hopper
2	SSAKAOOO 3 HCZZ	A A		D	Vinyl bag ($240 \times 360 \mathrm{~mm}$)
4	TiNSE3479 XHZZ	AN		D	Operation manual
5	TLABH3463XHZA	A C		D	Repid key labels
6	TGANE $2036 \times \mathrm{HZZ}$	AK		D	Warranty card
8	QCNW-3976XHŌG	A T		C	Hand set cord
9	SPAKA 4363 XHZZ	A B		D	Add, cord
10	SSAKA 3001 CCZZ	A A		D	Vinyl bag ($140 \times 360 \mathrm{~mm}$)
11	DUNTK4925XHW2	A Y		E	Hand set
12	SPAKA4 $355 \times \mathrm{HZZ}$	A D		D	Side pad, right
13	SPAKA4356XHZZ	A D		D	Side pad, left
14	SPAKC4603XHZZ	A S	N	D	Packing case
15	SPAKP3385SCZZ	A G		D	Vinyi cover
16	TCADZ2264XHZZ	A D		D	Installation repot
17	SPAKA4346XHZZ	A H		D	Protection sheet

7 Control PWB

	NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK		DESCRIPTION
	1	UBATL2033SCZZ	AK		B	Battery (CR2032-H03)	BT1]
	2	RC-EZ2032SCZZ	A B		C	Capacitor (16 WV $10 \mu \mathrm{~F}$)	[C1]
	3	RC-EZ2032SCZZ	AB		C	Capacitor ($16 \mathrm{WV} 10 \mu \mathrm{~F}$)	C2]
	4	VCEAEA1HW225M	A A		C	Capacitor ($50 W \mathrm{~W} 2.2 \mu \mathrm{~F}$)	C3]
	5	VCEAEA1EW475M	A A		C	Capacitor ($25 W \mathrm{WV} 4.7 \mu \mathrm{~F}$)	C4]
	6	VCEAEA1CW106M	AC		C	Capacitor (16 WV V $10 \mu \mathrm{~F}$)	C5]
	7	VCEAEA1CW106M	AC		C	Capacitor (16 WV V $10 \mu \mathrm{~F}$)	C6]
	8	VCEAEA1CW3 36 M	AB		C	Capacitor (16 WV V3 3 F)	[7]
	10	VCEAEA1EW226M	A A		C	Capacitor (25 WV V $22 \mu \mathrm{~F}$)	[8]
	111	VCEAEA1AW476M	A B		C	Capacitor (10 WV 474 F)	C9]
	12	VCEAEA1EW226M	A A		C	Capacitor (25 WV V $22 \mu \mathrm{~F}$)	[C11]
	13	VCKYTV1CF105	A A		C	Capacitor (50WV 1000PF)	C100]
	14	VCCSTV1HL391J	A B		C	Capacitor (16WV 1.0 $\mu \mathrm{F}$)	C101]
	15	VCKYTV1EB104K	A A		C	Capacitor (50WV 390PF)	C102]
	16	VCKYTV1CF105Z	AB		C	Capacitor ($25 \mathrm{WVV} 0.10 \mu \mathrm{~F}$)	C103]
	17	VCCCTV1HH390J	A A		C	Capacitor (16 WV V $1.0 \mu \mathrm{~F}$)	C104]
	19	VCKYTV1EF104Z	A A		C	Capacitor (25 WV $0.10 \mu \mathrm{~F}$)	C105]
	20	VCKYTV1CF105Z	A B		C	Capacitor ($16 \mathrm{WV} 1.0 \mu \mathrm{~F}$)	C107]
	21	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WVV} 0.10 \mu \mathrm{~F}$)	C108]
	22	VCCCTV1HH330J	A A		C	Capacitor (50WV 33PF)	C110]
	23	VCKYTV1EB104K	A A		C	Capacitor ($25 \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C111]
	24	VCCSTV1HL102 J	A A		C	Capacitor (50WV 1000PF)	C112]
	25	VCKYTV1CF105	A B		C	Capacitor (16 WV $1.0 \mu \mathrm{~F}$)	C113]
	26	VCKYTV1EF104Z	A A		C	Capacitor (25 WV 0 $0.10 \mu \mathrm{~F}$)	C114]
	28	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C117]
	29	VCCCTV1HH330J	A A		C	Capacitor (50WV 33PF)	C118]
	31	VCKYTV1EF104Z	A A		C	Capacitor (25 WV 0 $0.10 \mu \mathrm{~F}$)	C119]
	32	VCKYTV1CF105Z	A B		C	Capacitor (16 WV $1.0 \mu \mathrm{~F}$)	C120]
	33	VCKYTV1HB222K	A A		C	Capacitor ($16 \mathrm{WV} 1.0 \mathrm{\mu F}$)	C121]
	34	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C122]
	35	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C123]
	36	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C125]
	37	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C125]
	38	VCKYTQ1CF225Z	A C		C	Capacitor (16 WV $2.2 \mu \mathrm{~F}$)	C126]
	39	VCKYTV1CF105Z	A B		C	Capacitor ($16 \mathrm{WV} 1.0 \mu \mathrm{~F}$)	C128]
	40	VCCSTV1HL102J	A A		C	Capacitor (50WV 1000PF)	C129]
	42	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C130]
	43	VCKYTV1EF104Z	A A		C	Capacitor (50WV 2200PF)	C131]
	44	VCKYTV1HB222K	AA		C	Capacitor (25 WV 0.10 $\mathrm{\mu}$ F)	C132]
	45	VCKYTV1EF104Z	A A		C	Capacitor (25 WV $0.10 \mu \mathrm{~F}$)	C133]
	46	VCKYTV1EF104Z	A A		C	Capacitor (25 WV V $0.10 \mu \mathrm{~F}$)	C134]
	47	VCKYTV1HB103K	A B		C	Capacitor (50 WV V $0.010 \mu \mathrm{~F}$)	C135]
	48	VCKYTV1HB472K	A A		C	Capacitor ($50 W \mathrm{~W}$ 4700PF)	C136]
	49	VCKYTV1EF104Z	A A		C	Capacitor (25 WV V $0.10 \mu \mathrm{~F}$)	C137]
	50	VCCCTV1HH180J	A A		C	Capacitor (50WV 18PF)	C138]
	51	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WWV} 0.10 \mu \mathrm{~F}$)	C139]
	52	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WVV} 0.10 \mu \mathrm{~F}$)	C140]
	53	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WVV} 0.10 \mu \mathrm{~F}$)	C141]
	54	VCKYTV1HB222K	A A		C	Capacitor ($50 W \mathrm{WV} 2200 \mathrm{PF}$)	C142]
	55	VCKYTVIEF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C145]
	56	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C146]
	57	VCKYTV1EF104Z	A A		C	Capacitor ($25 W \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C147]
	58	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WVV} 0.10 \mu \mathrm{~F}$)	C148]
	59	VCKYTV1CF105Z	A B		C		C149]
	60	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C150]
	61	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C152]
	62	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C153]
	63	VCKYTV1HB222K	A A		C	Capacitor (50WV 2200PF)	C154]
	64	VCKYTV1EF104Z	A A		C	Capacitor (25 WV V $0.10 \mu \mathrm{~F}$)	C155]
	65	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C156]
	66	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WWV} 0.10 \mu \mathrm{~F}$)	C157]
	70	VCKYTV1HB222K	A A		C	Capacitor (50 WV 2200PF)	C158]
	$71 . \mathrm{V}$	VCKYTV1EF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.10 \mu \mathrm{~F}$)	C162]
	72 V	VCKYTV1HF223Z	A A		C	Capacitor ($50 \mathrm{WVV} 0.22 \mu \mathrm{~F}$)	C163]
	730	QCNCM 7014 SC0G	A B		C	Connector (7pin)	[C164]
	74	QCNCM2436SC4J	A H		C	Connector (40pin)	[CNCCD]
	75	QCNCM 7014 SCOF	A B		C	Connector (6pin)	CNLIU]
	76	QCNCM 7014 SCOB	AD		C	Connector (2pin)	[CNMT]
	77	QCNCM2482SC1H	A E		C	Connector (18pin)	[CNPLG]
	78	VHDISS355/ $/-1$	$A B$		B	Diode (1SS355)	[CNPNL]
	79 V	VHD ${ }^{\text {S S }} 355 / /-1$	$A B$		B	Diode (1SS355)	[D100]
	80.	VHDDAP202U/-1	AB		B	Diode (DAP202U)	D101]
	81	VHD1SS355//-1	$A B$		B	Diode (1SS355)	D102]
	82 V	VHViCPS07//-1	A A		B	C protector (ICP -	D103]
	83 V	VHViCPS05//-1	A A		B	C protector (ICP-S0.5)	[F1]
	84 V	VHiR96SHF//-1	B D		B	C (R96SHF)	[F2]
	85 V	VHiZ80180FSC6	$A X$		B	C (Z80180)	[IC1]
			AX		B	C (Z80180)	[1C2]

7. Control PWB

7 Control PWB

7 Control PWB

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK		DESCRIPTION
254	RCRSP2080SCZZ	A F		B	Crystal (24.00014 MHz)	[X2]
255	VHERD 22 FB3 $/-1$	AC		B	Zener diode (RD22FB3)	[ZD1]
256	TLABP3078SCZZ	A A		D	Shading label (for EP - ROM)	
	(Unit)					
901	DCEKC289GXHZZ	C A	N	E	Control PWB unit	

8 TEL-Liu PWB unit

FO-145A

8 TEL-Liu PWB unit

No.	PARTS CODE	Price	NEW	PART	DESCRIPTION		
148	$8 \mathrm{VRS-TS2AD104J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 100 \mathrm{~K} \Omega \pm 5 \%$)		R136]
	$9 \mathrm{VRS-TS2AD103J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$)		R137]
	(VRS-TS2AD223J	A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		R139]
	$1 \mathrm{VRS-TS2AD152J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 1.5 \mathrm{~K} \Omega \pm 5 \%$)		R140]
	2VRS-TS2AD223J	AA		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		
153	V3VS-TS2AD363J	A A		C	Resistor ($1 / 10 \mathrm{~W} 36 \mathrm{~K} \Omega \pm 5 \%$)		R142
154	54VRS-TS2AD223J	A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		R143]
	V6RS-TS2AD223J	A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		R144]
	6VRS-TS2AD223J	$A A$		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		[R145]
	$7 \mathrm{VRS-TS2AD104J}$	A A		C	Resistor ($1 / 10 \mathrm{~W} 100 \mathrm{~K} \Omega \pm 5 \%$)		R146
	$8 \mathrm{VRS-TS2AD223J}$	A A		C	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		
159	VRS-TS2AD223J	A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		R148
160	$150 \mathrm{VRS-TS2AD223J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		
	1 VRS-TS2AD103J	A A		c	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$)		
	VRS-TS2AD621J	A A		c	Resistor ($1 / 10 \mathrm{~W} 620 \Omega \pm 5 \%$)		
		A A			Resistor ($1 / 10 \mathrm{~W} 604 \Omega \pm 5 \%$)		
	64VRS-TS2AD621J	A A		C	Resistor ($1 / 10 \mathrm{~W} 620 \Omega \pm 5 \%$)		
	6 VRS-TS2AD000J	A A		C	Resistor ($1 / 10 \mathrm{~W} 0 \Omega \pm 5 \%$)		
166	$66 \mathrm{VRS-TS2AD333J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 33 \mathrm{~K} \Omega \pm 5 \%$)		
	$7 \mathrm{VRS-TS2AD472J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 4.7 \mathrm{~K} \Omega \pm 5 \%$)		
	$8 \mathrm{VRS-TS2AD104J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 100 \mathrm{~K} \Omega \pm 5 \%$)		
	69 VRS-TS2AD153J	A A		c	Resistor ($1 / 10 \mathrm{~W} 15 \mathrm{~K} \Omega \pm 5 \%$)		
		A A		c	Resistor ($1 / 10 \mathrm{~W} 22 \mathrm{~K} \Omega \pm 5 \%$)		
		A A		c	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$)		
		A A		c	Resistor ($1 / 10 \mathrm{~W} 13 \mathrm{~K} \Omega+5 \%$)		
174	$3 \mathrm{VRS-TS2AD124J}$	${ }_{\text {A }} \mathrm{A}$ A		c	$\frac{\text { Resistor }(1 / 10 \mathrm{O}}{\text { Resistor }}$ (110w $+5 \%$)		
	$5 \mathrm{VRS}-$ TS2AD224J	${ }_{\text {A }} \mathrm{A}$		${ }_{c}$	Resistor ($1110 \mathrm{~W} \frac{120 \mathrm{~K} \Omega \pm 5 \%)}{\text { Resistor (1/10W } 220 \mathrm{~K} \Omega} \pm 5 \%$)		
	6 VRS-TS2AD000J	A A		c	Resistor ($1 / 10 \mathrm{~W} 0 \Omega \pm 5 \%$)		
177	$7 \mathrm{VRS-TS2AD154J}$	A A		c	Resistor ($1 / 110 \mathrm{~W} 150 \mathrm{~K} \Omega \pm 5 \%$)		
178	8 VRS-TS2AD153J	A A		c	Resistor ($1 / 10 \mathrm{~W} 15 \mathrm{~K} \Omega \pm 5 \%$)		
	VRS-TS2AD221J	$A A$		c	Resistor ($1 / 10 \mathrm{~W} 220 \Omega \pm 5 \%$)		
	ORS-TS2AD332J	A A		c	Resistor ($1 / 10 \mathrm{~W} 3.3 \mathrm{~K} \Omega \pm 5 \%$)		
	1 VRS-TS2AD154J	A A		c	Resistor ($1 / 10 \mathrm{~W} 150 \mathrm{~K} \Omega \pm 5 \%$)		
	$2 \mathrm{VRSTTS2AD910J}$	A A		c	Resistor ($1 / 110 \mathrm{~W} 91, \ldots 5 \%$)		
183	3 VRS -TS2AD221J	A A		c	Resistor ($1 / 10 \mathrm{~W} 220 \mathrm{~N} \pm 5 \%$)		
	$4 \mathrm{VRS-TS2AD300J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 30 \mathrm{~N} \pm 5 \%$)		
185	$5 \mathrm{VRS-TS2AD203J}$	A A		c	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)		
	6 VRS-TS2AD683J	A A		c	Resistor (1/10W $68 \mathrm{~K} \Omega \pm 5 \%$)		
	7 VHDS12B60//-1	A		B	Diode brdige (S12860)		
	8 VHDOR5G4B42-1	AF	N	B	Diode briige (0R564842)		
189	QSW-Z2214SCZZ	AH		8	Hook switch		
190	0 RTRNZ2140 ${ }^{\text {a }}$	AN		B	Transformer		
$\underline{191}$	1 RTRNi $2142 \times \mathrm{HZZ}$	AR		B	Transformer (6000)		
192	3RRLYD $2140 \times \mathrm{CLZ}$	AN		B	Transformer		
	$4 \mathrm{VRD}-\mathrm{HTTEYOOOJ}$	A A		8			
195	$5 \mathrm{VRD-HT2EY000J}$	${ }_{\text {A }} \mathrm{A}$ A		$\stackrel{C}{c}$			
	$6 \mathrm{VRD-HT2EYOOOJ}$	$A A$		c	Resistor ($1 / 4 \mathrm{~W} 0 \Omega \pm 5 \%$)		
	$7 \mathrm{VRD}-\mathrm{HT} 2$ EY000J	A A		c	Resistor ($1 / 4 \mathrm{~W} 0 \Omega \pm 5 \%$)		${ }_{[\text {[P4] }}$
	$8 \mathrm{VRD-HT2EY000J}$	A A		c	Resistor ($1 / 4 \mathrm{~W} 0 \Omega \pm 5 \%$)		
		${ }^{\text {A B }}$		${ }^{8}$	Varistor (ENC271005A)		
	1 VHVTN07G471-1	${ }^{\text {A }}$ A B		B	Varistor (TNR7G471KT2)		VA
202	$2 \mathrm{RVR-Q1402QCZZ}$	AD		B	Variable resistor (RS10M11AJ)		VA3
203	$3 \mathrm{VHEHZ11} 1 \mathrm{C}^{1 / /-1}$	AB		B	Zener diode (Hz11C3)		
204	$4 \mathrm{VHEHZS3B1//-1}$	A C		B	Zener diode (HZS33B1)		[zD2
	VHEHZS3B1//-1	$A C$		B	Zener diode (HZS3B1)		
	VHEMTZ6R8B/-1	$A B$			Zener diode (MTZ6R8B)		
207	VHEMTZJ300B-1	A A		B	Zener diode (MTZ30)		
208	VHEHZS3B1//-1	${ }^{\text {A }}$ C		B	Zener diode (HZS3B1)		
	$V H E H Z S 3 B 1 / /-1$	A C		B	ener diode		
	VHEHZS3B1//-1	AC		B	Zener diode (HZS381)		[Z20
		${ }^{\text {A C }}$		B	Zener diode (HZS3B1)		
	VHEHZS3B1//-1	${ }^{\text {A }}$		B	Zener diode (HZS3B1)		
				B	Zener diode (Hz53B1)		
214	VHERD18EL2/-1	A A		B	Zener diode (RD18EL2)		
	(Unit)						[2012]
	DCEKL419AXH04	BT		E	TEL-Liu PWB unit		

9 Power supply PWB unit

NO.	PARTS CODE	PRICE	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK	DESCRIPTION	
1	$0 \mathrm{CBUGFM224HG/}$	AG		C	Film capacitor (QEX2E224KTP2CS)	[
2	OCBUGFM224HG/	AG		C	Film capacitor (QEX2E224KTP2CS)	
3	$0 \mathrm{CBUGCZ222CK/}$	AF		c	Ceramic capacitor (DE1410-1E222MACT4K-KD)	C2]

9 Power supply PWB unit

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION	
4	$0 \mathrm{CBUGCZ222CK/}$	A F		C	Ceramic capacitor (DE1410-1E222MACT4K-KD)	[C4]
5	$0 \mathrm{CBUGBQ} 820 \mathrm{BR} /$	AP		C	Capacitor (LGQ2G820MHSZ)	[C5]
6	$0 \mathrm{CBUGCU103BC/}$	AD		C	Ceramic capacitor (DE1307-1E10321K)	C6]
7	$0 \mathrm{CBUGCU} 221 \mathrm{BQ} /$	A D	N	C	Ceramic capacitor (DE0705-1R221K1K-MHR)	C7]
8	0 CBUGFF103ER/	A C		C	Film capacitor (AMZF-103K50)	C8]
9	OCBUGFF683ER/	A D		C	Film capacitor (AMZF-683K50)	C9]
10	0CBUGFF472ER/	A B		C	Film capacitor (AMZF-472K50)	C10]
11	OCBUGFF102ER/	A C		C	Film capacitor (AMZF-102K50)	C11]
12	$0 \mathrm{CBUGCQ} 222 \mathrm{AQ} /$	A E		C	Ceramic capacitor (DE7100-1F222MVA1-KC)	C12]
13	$0 \mathrm{CBUGCQ} 222 \mathrm{AQ} /$	A E		C	Ceramic capacitor (DE7100-1F222MVA1-KC)	C13]
14	$0 \mathrm{CBUGAD101PS/}$	A F	N	C	Capacitor (LXF25VB100(M)FM -6.3)	C14]
15	0 CBUGAD470NT/	A D	N	C	Capacitor (KMG25VB47(M)FM)	C15]
16	$0 \mathrm{CBUGAC122GK/}$	A G		C	Capacitor (UPL1C122MHH1AA)	C16]
17	0 CBUGAC $221 \mathrm{HD} /$	A C		C	Capacitor (UVZ1C221MEH1AA)	C17]
18	$0 \mathrm{CBUGCS} 222 \mathrm{AP} /$	A C		C	Ceramic capacitor (DD08-63E222P500)	C18]
19	0 CBUGAE122NS/	A H		C	Capacitor (LXF35VB1200(M)MC-12.5)	C19]
20	0 CBUGAE221HD/	AD		C	Capacitor (UVZ1V221MPH1AA)	C20]
21	OCBUGFF471ER/	AC		C	Film capacitor (AMZF-471K50)	C21]
22	OCBPKZ0194ZZ/	A C		C	Base post ass'y (B2P3-VH)	CN1]
23	OCBPCZ0173ZZ/	A F		C	Connector (08R-FJ)	CN2]
24	0CBPCZ0160ZZ/	A E		C	Connector (M1698(MEP 1698))	CN3-1]
25	OCBPZZ0739ZZ/	A E		C	Bush (M1773(MOL1773))	CN3-2]
26	OCBUBB0149DZ/	A H		B	Diode stack (D3SBA60)	D1]
27	0 OBUBC0220BZ $/$	A D		B	Diode (1NU41)	D2]
28	VHDIN4148//-1	A A		B	Diode (1SS55)	D3]
29	0 CBUBC0182BL/	A E		B	Diode (10ELS2-TA1B2)	D4]
30	0 CBUBC0280BZ/	AC		B	Diode (11EQ04)	D5]
31	OCBUBB0166BB/	AK		B	Diode stack (F10P20F-L)	D6]
32	0CBPJCZZ0037/	A G		A	Current fuse (19181 1.25A)	F1]
33	0 CBPJCZZ0037/	A G		A	Current fuse (19181 1.25A)	F2]
34	OCBPJT0153ZZ/	A E		A	Thermal cutoff (EVP2BH115FF)	[F3]
35	0 CBBFZ891542/	AC		C	Ferrite core (BL01RN1-A62B1)	FB1]
36	0 CBUCC0013DZ/	AM		B	IC (UPC78N12H)	[1C1]
37	$0 \mathrm{CBUCBO112AZ/}$	AK		B	IC (NJM7805FA)	[1C2]
38	OCBUKZ0578ZZ/	A H		C	Filter (PLAA2230R4R01B1)	[L1]
39	0 CBUKZ0578ZZ/	AH		C	Filter (PLAA2230R4R01B1)	[2]
40	OCBLRH0356ZQ/	AN	N	C	Heat sink (D2178-5001BT EZS)	MT1]
41	0 CBLRH0343ZP/	AH		C	Heat sink (D2178-5002A TC)	MT2]
42	OCBUDC0139AZ/	AN		B	Photo coupler (PC113Y11)	PC1]
43	OCBUAGO139AZ/	A Q	N	B	FET (2SK2483)	[Q1]
44	OCBUACOO56BZ/	AD		B	Transistor (2SC2002-L)	Q2]
45	$0 C B U A C O 098 E Z /$	AK		B	Transistor (2SC3518-K)	Q3]
46	OCBUACOOO4DZ/	A C		B	Transistor (2SC945-PA)	Q4]
47	OCBUEFC564BA/	A C		C	Metal film resistor (SFR25H560K)	R1]
48	0 CBUEFER22CF/	A D	N	C	Metal film resistor (SPRX2-T52-R22J)	R2]
49	0 CBUEEB471CT/	AC	N	C	Carbon resistor (RD16S-T26-471J)	R3]
50	OCBUEEB183CT/	AC	N	C	Carbon resistor (RD16S-T26-183J)	R4]
51	0 CBUEEB564CT/	A C	N	C	Carbon resistor (RD16S-T26-564J)	R5]
52	OCBUEEB564CT/	A C	N	C	Carbon resistor (RD16S-T26-564J)	R6]
53	0 CBUEFE823CG/	AC		C	Metal film resistor (RSS2 823J)	R7]
54	OCBUEFE823CG/	A C		C	Metal film resistor (RSS2 823J)	R8]
55	OCBUEFE391CL/	AC		C	Metal film resistor (RSS2-L15-391J)	R9]
56	0 CBUEEB330CW/	A C	N	C	Carbon resistor (RDF16S-T26-330J)	R10]
57	OCBUEFD561CC/	A D	N	C	Metal film resistor (RSS1-T52-561J)	R11]
58	OCBUEEB222CT/	A C	N	C	Carbon resistor (RD16S-T26-222J)	R12]
59	OCBUEEB271CT/	A C	N	C	Carbon resistor (RD16S-T26-271J)	R13]
60	OCBUEEB682CT/	A C	N	C	Carbon resistor (RD16S -T26-682J)	R14]
61	OCBUEEB242CT/	A C	N	C	Carbon resistor (RD16S-T26-242J)	R15]
62	OCBUEFF102BG/	A C		C	Metal film resistor (RSS3 102J)	[R16]
63	OCB829650003/	B D	N	B	Transformer (PT-P83-KTT)	[T1]
64	OCBUDZ0052ZZ	AG		B	Thermistor (M16007C)	[TH1]
65	OCBUEZ05072Z/	AD	N	B	Varistor (ERZV07D471-CS)	[V1]
66	OCBUERABH911/	A E		B	Varistor (NV910D10)	[V2]
67	OCBUFBA501DC/	AC		B	Variable resistor (KVSF637AB501)	VR1]
68	OCBUBDAC 270 D/	AC		B	Zener diode (RD27ESAB3)	ZD1]
69	OCBUBDBW3R6B/	AB		B	Zener diode (MTZJ T-72 3.6A)	ZD2]
70	OCBUBDAE300D/	A D		B	Zener diode (RD30FB3)	[D2]
71	0CBUBDBW6R2C/	AB		B	Zener diode (MTZJ T-72 6.2B)	[2D4]
	(Unit)					
901	RDENT $2085 \times \mathrm{HZZ}$	B A	N	E	Power supply PWB unit	

10 CCD PWB unit

NO.	PARTS CODE	PRICE RANK	$\begin{gathered} \text { NEW } \\ \text { MARK } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION		
1	VCEAJA1EW226M	AB		C	Capacitor ($25 \mathrm{WV} 22 \mu \mathrm{~F}$)		C1
2	VCKYTQ1EF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.1 \mu \mathrm{~F}$)		

10 CCD PWB unit

NO.	PARTS CODE	PRICE RANK	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$		DESCRIPTION
3	QCNW-4318XHZZ	AK		C	CCD cable	CN1]
4	VHiTCD1206UP1	A X		B	IC (TCD1206SUP)	IC1]
5	VS2SC2412KS-1	AB		B	Transistor (2SC2412KS)	Q1]
6.	VRS-TP2BD222J	A A			Resistor ($1 / 8 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$)	R1]
7	VRS-TP2BD390J	A A		C	Resistor ($1 / 8 \mathrm{~W} 39 \Omega \pm 5 \%$)	R2]
	(Unit)					
901	DCEKD281AXH02	B V		E	CCD PWB unit	

50 Hardware parts

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
B1	LX-BZ2138XHZZ	AB		C	Screw
B2	LX-BZ2182XHZZ	A B		C	Screw
B4	XBBSD30P06000	A A		C	Screw (3×6)
B5	XBPSD30P06K00	A A		C	Screw ($3 \times 6 \mathrm{~K}$)
B6	XBPSE30P08K00	A A		C	Screw ($3 \times 8 \mathrm{~K}$)
B7	XBPSN40P06K00	A A		C	Screw ($4 \times 6 \mathrm{~K}$)
B9	XEBSD30P06000	A A		C	Screw (3×6)
B10	XEBSD30P08000	A A		C	Screw (3×8)
B11	XEBSD30P10000	A A		C	Screw (3×10)
B12	XEBSF30P08000	A A		C	Screw (3×8)
B13	XEBSE30P10000	A A		C	Screw (3×10)
B14	XHBSD30P05000	A A		C	Screw (3×5)
B15	XJPSD30P04000	A A		C	Screw (3×4)
B16	XUBSD20P06000	A A		C	Screw (2×6)
W1	LX-WZ2047XHZZ	AK		C	Washer
W2	LX-WZ $2060 \times H Z Z$	A B		C	Washer
W3	LX-WZ2050XHZZ	AK		C	Washer
		-			- - - - - - - -
		,			
		-			
		-		-	
		-			
-					

- Index

PARTS CODE	NO.	PRICE	$\begin{array}{\|c} \text { NEW } \\ \text { MARK } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { PART } \\ \text { RAN } \end{array}$
(C)				
CCNW-4268XH01	1-36	AE		C
CCNW-4270XH01	3-1	AU		C
CCNW-4350×H01	1-1	AA		C
CPNLH2350XH10	1-2	BM	N	D
"	2-901	BM	N	D
(D)				
DCEKC289GXHZZ	1-15	CA		E
"	7-901	CA	N	E
DCEKD281AXH02	5-1	BV		E
"	10-901	BV		E
DCEKL419AXH04	1-16	BT		E
/'	8-901	B T		E
DCEKP363AXH02	2-1	BG	N	E
DUNTK4925XHW2	6-11	AY		E
[G]				
GCABA 2245 XHZE	2- 2	AZ	N	D
GCABB2247XHXA	1-3	BA		D
GCŌVA2341XHZA	1-44	AK		D
GCOVH2348XHZZ	3- 2	A H		C
GDA - 2067 XHZE	1-10	A V		C
GLEGG2036 XHZZ	1-18	A A		C
GLEGG2058SCZA	1-48	AD		C
[H]				
HPNLH2350XHZC	2-3	AC		D
(J)				
JBTN-2085 XHZA	2-4	AR		C
JBTN-2086XHZA	2- 5	A P		C
JBTN-2088XHZA	2- 6	AP		C
JBTN-2127XHZA	2-7	AF		C
JBTN-2128XHZA	2- 8	AD		C
JKNBP 2065 XHZA	2- 9	AC		C
[L]				
LBNDJ 2006 XHZZ	1-37	A A		C
LBSHP 2057 XHZZ	1-30	AB		C
LFRM-2147XHYA	5- 2	AV	N	C
LPLTG2593 XHZZ	3- 3	AG		C
LPLTM2665XHZZ	4-1	AM		C
LPLTM2704XHZZ	1-20	AT		C
LPLTP $2650 \times \mathrm{HZA}$	4-16	AK		C
LPLTP2651XHZA	4-19	AH		C
LPLTP2655XHZA	4- 2	AM		C
LPLTP2699XHZZ	2-10	AC		C
LPLTP $2700 \times \mathrm{HZZ}$	3-4	A C		C
LPLTP2701XHZZ	3-5	AC		C
LPLTP2703XHZZ	3-6	A C		c
LX-BZ2138XHZZ	50-B1	AB		C
LX B B 2182 XHZZ	50-B2	AB		C
LX-WZ2047XHZZ	50-W1	AK		C
LX-WZ2050XHZZ	50-W3	AK		C
LX-WZ2060XHZZ	50-W2	$A B$		C
[M]				
MLEVP2171XHZZ	1-38	AC		C
MLEVP2172XHZA	1-8	AC		C
MLEVP2173XHZZ	1-39	AC		C
MLEVP2174XHZZ	3-7	A H		C
MROD-2004XHZA	1-45	AC		C
MSPRC2536XHZZ	4- 3	AC		C
MSPRC2537 ${ }^{\text {KHZA }}$	4-17	AB		C
MSPRC2544XHZZ	1-40	$A B$		C
MSPRC2641XHZZ	2-11	AB		C
MSPRC2689XHZZ	1-41	AC		C
MSPRC2690XHZZ	3-22	AB		C
MSPRC2691XH2Z	3-8	$A B$		C
MSPRC2692XHZZ	3-9	AB		C
MSPRC2693XHZZ	3-10	$A B$		C
	1-12	$A \mathrm{~A}$		C
MSPRC2725XHZZ	3-11	AC		C
MSPRC2727XHZZ	1-9	$A C$		C
MSPRP2512XHZZ	5-3	AK		C
MSPRP2618XHZZ	5-4	$A D$		C
MSPRP2619XHZZ	5-5	AD		C
MSPRP $2687 \times \mathrm{HZZ}$	1-5	AC		C
MSPRP2688×HZZ	3-12	AC		C
[N]				
NBRGP2138XHZZ	1-6	AD		C
NBRGP $2141 \times \mathrm{HZZ}$	3-19	AH		C
NGERH2163 ${ }^{\text {PHZZ }}$	4-4	AK		C
"	4-18	AK		C
NGERH2197XHZZ	4-5	AF		C

PARTS CODE	NO.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{gathered} \text { NEW } \\ \text { MARK } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \end{array}$
NGERH2198XHZA	$4-$	AG	N	C
NGERH2199XHZA	4-7	AH	N	C
NGERH2201XHZA	4-8	AG	N	C
NGERH2202XHZZ	4- 9	AE		C
NGERH2204XHZZ	1-26	AM		C
NGERH2205XHZA	1-28	AF		C
NGERH2207XHZZ	3-20	$A D$		C
NGERH2210XHZA	4-10	AC	N	C
NGERH2259XHZA	1-31	AC	N	C
NGERH2260XHZA	1-42	AC	N	C
NGERP2206XHZZ	2-12	AE		C
NROLP2249XHZZ	1-7	AE		C
NROLP2300×HZZ	3-13	AC		C
NRÖLR2293XHZZ	1-27	AM		C
NROLLR2294XHZZ	1-29	AR		C
	3-21	AQ		C
NROLR2296XHZZ	1-32	AC		c
NSFTZ2228SCZZ	3-14	AC		C
[P】				
PCUSS2075XHZZ	5-14	AA	N	c
PCUSS2076XHZZ	5-15	AA	N	C
PGiDM2289XHZZ	1-14	AB		C
PGiDP2403XHZB	3-15	BA	N	C
PGiDP2404XHZA	2-13	AX		C
PGiDP2405XHZA	2-14	AX		C
PGLSP2043XHZZ	5-6	AK		C
PHÖP-2080XHZZ	6-1	AF		D
PLNS-2043XHZZ	5-7	AU		B
PMAGE 2054 XHZZ	4-11	AK		B
PMiR-2061XHZZ	5-8	AH		C
PMiR-2062XHZZ	5-9	AM		C
PSHEZ2879XHZZ	5-10	AK		C
PSHEZ2915XHZZ	5-11	AY		C
PSHEZ3031XHZZ	1-33	A A		C
PSHEZ3032XHZA	3-16	AC	N	C
PSHEZ3034XHZZ	2-15	AC		C
PSHEZ3086XHZZ	1-54	AR		C
PSHE23093XHÖG	1-53	AF		C
PSHEZ3115XHZZ	1-55	AD	N	C
PSPAZ2199XHZZ	1-52	AQ		C
PTME-2038×HZA	4- 12	AK		C
PTME-2040XHZZ	4-13	AK		C
[Q1				
QACCL762ASCZZ	1-17	AW		B
QCNCM2401SC0B	8-57	A A		C
QCNCM2436SC4J	7-74	$A \mathrm{H}$		C
QCNCM2482SC1H	7-71	AE		C
QCNCM7014SC0B	7-76	$A D$		C
/1	8-53	AD		C
QCNCM 7014 SC0F	7-75	AB		C
QCNCM 7014 SC0G	7-73	AB		C
QCNCM7014SC1C	8-58	AC		C
QCNCM886HAFZZ	8-56	AC		C
QCNCW2436SC4J	8-54	A H		C
QCNW-3976XHOG	6- 8	AT		C
QCNW-4222XHZZ	8-55	AM		C
QCNW-4273XHZZ	5-12	AE		C
QCNW-4275 XHZZ	4-14	AE		c
QCNW-4296XHZZ	3-17	AE		C
QCNW-4318XHZZ	10-3	AK		c
QJAKZ2046SCBB	8-95	A H		C
QJAKZ2046SCDB	8-96	AH		C
QJAKZ2047SC0D	8-97	$A G$		C
QSÖCZ2051SC32	7-92	$A C$		C
QSW-M2184SCZZ	8-62	AD		B
QSW-Z2214SCZZ	8-189	$A{ }^{\text {A }}$		B
QTANZ2042SCZZ	8-2	$A B$		c
[R]				
RC-EZ107VSCIC	8-30	$A C$		C
RC-EZ2032SCZZ	7- 2	AB		C
/	7-3	$A B$		C
RCiLZ1044CCZZ	7-100	$A C$		C
-	7-103	$A C$		C
RCiLZ2096SCZZ	8-90	$A B$		C
"	8-91	$A B$		C
"	8-92	$A B$		C
/1	8-93	$A B$		C
-	8-94	AB		C
RCiLZ2104SCZZ	7-101	AK		C
RCÖRF2064 XHZZ	1-47	AF	N	B

PARTS CODE	NO.	PRICE RANK	NEW MARK	PART RANK
RCRSB0297AFZZ	7-253	AD		B
RCRSP2080SC2Z	7-254	AF		B
RDENT 2085 XHZZ	1-21	BA		E
/	9-901	BA	N	E
RHEDZ2044XHZA	3-18	BK		B
RMŌTZ2104SCZZ	4-15	AX		B
RRLYD3127QCZZ	8-193	A H		B
RRLYZ3420SCZZ	8- 52	AR		B
RTRNi2142XHZZ	8-191	AR		B
RTRNZ2140XHZZ.	8-190	AN		B
"	8-192	AN		B
RVR-Q1402QCZZ	8-202	AD		B
[S]				
SPAKA4346XHZZ	6-17	A H		D
SPAKA4355 XHZZ	6-12	AD		D
SPAKA4356XHZZ	6-13	AD		D
SPAKA4363XHZZ	6-9	AB		D
SPAKC4603XHZZ	6-14	A S	N	D
SPAKP3385SCZZ	6-15	AG		D
SSAKA0003HCZZ	6-2	A A		D
SSAKA3001CCZZ	6-10	AA		D
[T]				
TCADZ2264XHZZ	6-16	AD		D
TGANE 2036 XHZZ	6-6	AK		D
TiNSE3479 X HZZ	6-4	AN		D
TLABH3463XHZA	6- 5	AC		D
TLABP3078SCZZ	7-256	A A		D
TLABS3522XHZZ	1-57	A A		D
TLABS3523XHZZ	1-56	AA		D
TLABZ3418XHZZ	1-58	AA		D
[U]				
UBATL2033SCZZ	7-1	AK		B
[V]				
VCCCTVIHH180J	7-50	AA		C
VCCCTV1HH330J	7-22	A A		C
"	7-29	AA		C
VCCCTV1HH390J	7-17	AA		C
VCCSTV1HL102J	7-12	$A A$		C
"	7-24	A A		C
"	7-40	AA		C
VCCSTV1HL391J	7-14	$\bar{A} A$		C
VCEAEA1AW476M	7-10	AB		C
VCEAEA1CW106M	7-6	AC		C
"	7.7	AC		C
VCEAEA1CW336M	7-8	AB		C
"	8-10	AB		C
VCEAEA1EW107M	8- 3	AB		C
VCEAEA1EW226M	7-9	A A		C
"	7-11	AA		C
"	8- 5	AA		C
VCEAEA1EW475M	7-5	A A		C
VCEAEA1EW476M	8-28	AB		C
"	8-29	$A B$		C
"	8-31	$A B$		C
VCEAEA1HW104M	8-12	AB		C
"	8-13	AB		C
"	8-14	AB		C
"	8-15	$A B$		C
"	8-21	$A B$		c
VCEAEA1HW105M	8-11	$A C$		C
"	8-25	$A C$		C
VCEAEA1HW 106 M	8-20	$A A$		c
VCEAEA1HW225M	7-4	$A A$		C
"	8-22	A A		C
VCEAEA1HW334M	8-16	$A A$		C
VCEAEA1HW475M	8-17	AA		C
/1	8-18	AA		C
"	8-26	$A A$		C
"	8-27	$A A$		C
VCEAJA1EW226M	10- 1	$A B$		C
VCFYJU2EA104K	8-23	$A C$		C
VCFYJU2EA105K	8-24	AE		C
VCFYJU2EA474K	8-32	$A D$		C
VCKYTQ1CF225Z	7-38	$A C$		C
VCKYTQ1EF104Z	10- 2	A A		C
VCKYTVICF105Z	7-13	$A B$		C
"	7-16	$A B$		C
"	7-20	$A B$		C
"	7-25	$A B$		C
/	7. 31	AB		C

PARTS CODE	NO.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
VCKYTVICF105Z	7-32	AB		C
"	7-39	AB		C
"	7-59	A B		C
VCKYTVIEB104K	7-15	A A		C
"	7-23	A A		C
VCKYTV1EF104Z	7-19	$\bar{A} A$		C
/	7-21	A A		C
"	7-26	AA		C
"	7-28	A A		C
"	7-30	AA		C
"	7-43	A A		C
"	7-45	A A		C
"	7-46	A A		C
"	7-49	A A		C
"	7-51	A A		C
"	7-52	A A		C
"	7-53	A A		C
"	7-55	AA		C
"	7- 57	A A		C
"	7-58	A A		C
"	7-64	A A		C
"	7-65	A A		C
"	7-66	A A		C
"	7-71	A A		C
VCKYTV1HB102K	8-44	A A		C
"	8-51	A A		C
VCKYTV1HB103K	7-47	A B		C
"	8-33	A B		C
"	8-34	AB		C
/	8-37	AB		C
/1	8-38	AB		C
/	8-39	$A B$		C
"	8-49	AB		C
"	8-50	AB		C
VCKYTV1HB222K	7-33	A A		C
"	7-34	AA		C
"	7-35	A A		C
"	7-36	A A		C
/	7-37	AA		C
"	7- 41	AA		C
"	7-42	A A		C
"	7- 44	A A		C
"	7-54	A A		C
"	7-56	AA		C
"	7-60	A A		C
"	7-61	AA		C
"	7-62	A A		C
"	7-63	A A		C
/	7-70	A A		C
"	8-48	A A		C
VCKYTV1HB333K	8-36	A A		C
VCKYTV1HB472K	7-48	A A		C
VCKYTV1HB682K	8-40	A A		C
VCKYTV1HF154Z	8-35	AB		C
VCKYTV1HF2232	7-72	A A		C
"	8- 41	A A		C
"	8-42	AA		C
"	8-43	AA		C
"	8-45	A A		C
"	8- 46	A A		C
"	8-47	A A		C
VCQYNA1HM104K	8-4	$A B$		C
"	8- 6	AB		C
"	8-8	AB		C
"	8-19	$A B$		C
VCQYNA1HM473K	$8-9$	$A A$		C
VCQYNA1HM562K	8-7	AC		C
VHDDAP 202U/-1	7-80	$A B$		B
VHDDSS 131//-1	8-61	$A A$		B
VHDDSS $133 / /-1$	8-59	AA		B
/	8-60	AA		8
VHDS 12B60//-1	8-187	$A C$		B
VHDOR5G4B42-1	8-188	AF	N	B
VHDIN4148//-1	9-28	A A		B
VHD1SS355//-1	7. 78	AB		B
/	7-79	$A B$		B
"	7-81	$A B$		B
VHEHZS3B1//-1	8-204	A C		B
/	8-205	AC		B
"	8-208	AC		B

PARTS CODE	NO.	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
VHEHZS3B1//-1	8-209	AC		B
"	8-210	AC		B
/	8-211	AC		B
"	8-212	A C		B
"	8-213	AC		B
VHEHZ11C3//-1	8-203	$\overline{A B}$		B
VHEMTZJ300B-1	8-207	AA		B
VHEMTZ6R8B/-1	8-206	AB		B
VHERD18EL2/-1	8-214	A A		B
VHERD22FB3/-1	7-255	A C		B
VHiBU4053BCFI	8-71	AE		B
VHiLH5116NA10	7-89	AL		B
VHiLH5160N10Y	7-87	AR		B
VHiLZ9FJ11/-1	7-88	AY		B
VHiMC34114/-1	8-64	AK		B
VHINJM2113D-1	8-70	AF		B
VHINJM2903M-	7-99	AD		B
VHiNJM2904M-1	7-95	AE		B
VHINJM4558D-1	8-65	AN		8
II	8-66	AN		B
"	8-69	AN		B
VHiNJM4558F-1	7-97	AD		B
VHiNJU6355E-1	7-96	AM		B
VHiPST591CMT1	7-98	$\overline{A E}$		B
VHiR96SHF//-1	7-84	B D		B
VHiTCD1206UP1	10-4	AX		B
VHITLS $1019 /-1$	7-86	AU		B
VHIULN2003ANS	7-91	AE		B
"	8-67	AE		B
"	8-68	AE		B
VHiW2465S70LL	7-90	AW		B
VHi280180FSC6	7-85	AX		B
VHi27010FSFOC	7-92	BM	N	B
VHPPC814///-1	8-103	AE		B
VHPPC817D//-1	8-99	AD		B
"	8-100	AD		B
"	8-101	AD		B
"	8-104	AD		B
VHPPC851///-1	8-102	AF		B
VHPSG206///-1	8-63	AE		B
"	8-98	AE		B
"	8-105	AE		B
VHPSNK08A24-1	5-13	AZ		B
VHVDSS401M-1	8-1	AG		B
VHVENC271D05A	8-199	AB		B
VHVICPS05//-1	7-83	A A		B
VHViCPS07//-1	7-82	A A		B
VHVTN07G471-1	8-200	AB		B
"	8-201	AB		8
VRD-HT2EY000J	8-194	A A		C
"	8-195	AA		C
/	8-196	A A		C
"	8-197	AA		C
"	8-198	AA		C
VRD-HT2HY150J	8-111	AA		C
"	8-112	A A		C
VRS-HT3AA300J	8-110	AC		C
VRS-HT3AA333J	8-114	A A		C
VRS-HT3DA470J	8-113	A A		C
VRS-TP2BD000J	7-102	$A A$		C
/	7-125	AA		C
"	8-72	A A		C
"	8-73	AA		C
"	8-74	A A		C
"	8-75	A A		C
"	8-76	AA		C
/	8-77	A A		C
"	8-78	AA		C
"	8-79	A A		C
"	8-80	$A A$		C
/	8-81	AA		c
II	8-82	AA		C
"	8-83	A A		C
"	8-84	A A		C
"	8-85	A A		C
"	8-86	A A		C
/	8-87	AA		C
"	8-88	AA		C
"	8-89	A A		C
VRS-TP2BD201J	7-143	AA		C

PARTS CODE	NO.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
VRS-TP2BD222J	10- 6	A A		C
VRS-TP2BD390J	$10^{-} 7$	A A		C
VRS-TP2BD561J	7-158	A A		C
VRS-TS2AD000J	7-112	A A		C
"	7-141	$\overline{A A}$		C
"	7-187	A A		C
"	7-234	A A		C
"	7-237	A A		C
"	8-119	A A		C
II	8-134	A A		C
/	8-135	A A		C
"	8-165	A A		C
"	8-173	A A		C
"	8-176	A A		C
VRS-TS2AD100J	7-114	A A		C
"	7-117	A A		C
"	7-118	A A		C
"	7-119	A A		C
/	7-122	A A		C
"	7-123	A A		C
"	7-124	A A		C
"	7-130	A A		C
/	7-131	A A		C
"	7-132	A A		C
"	7-136	A A		C
"	7-137	A A		C
"	7-146	A A		C
"	7-147	A A		C
"	7-150	A A		C
"	7-151	A A		C
"	7-152	A A		C
"	7-153	A A		C
"	7-162	A A		C
"	7-163	A A		C
"	7-164	A A		C
"	7-165	A A		C
"	7-165	A A		C
/1	7-167	A A		C
"	7-168	A A		C
/1	7-169	A A		C
/	7-170	A A		C
"	7-173	AA		C
VRS-TS2AD102J	7-140	AA		C
"	7-192	AA		C
"	7-229	AA		C
VRS-TS2AD103J	7-108	A A		C
"	7-120	A A		C
"	7-121	A A		C
"	7-129	A A		C
"	7-133	AA		C
"	7-134	A A		C
"	7-135	A A		C
"	7-139	AA		C
"	7-142	A A		C
"	7-154	A A		C
"	7-155	AA		C
/1	7-156	A A		C
"	7-159	AA		C
11	7-160	A A		C
"	7-161	AA		C
/1	7-171	AA		C
"	7-174	AA		C
"	7-175	A A		C
"	7-176	$A A$		C
"	7-177	AA		C
"	7-179	A A		C
"	7-180	AA		C
"	7-184	$A A$		C
"	7-185	AA		C
"	7-188	$A A$		c
"	7-189	AA		C
"	7-190	AA		C
"	7-191	A A		C
"	7-196	A A		C
"	7-197	A A		C
"	7-198	AA		C
"	7-206	A A		C
"	7-207	AA		C
"	7-208	AA		C
"	7-209	A A		C

PARTS CODE	NO.	PRICE RANK	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \end{array}$
VRS-TS2AD103J	7-212	AA		C
/	7-215	A A		C
/1	7-228	A A		C
/	7-236	AA		C
/	7-238	AA		C
"	7-240	AA		C
/	7-242	AA		C
"	7-245	AA		C
/1	7-251	AA		C
"	7-252	AA		C
"	8-132	A A		C
"	8-133	AA		C
"	8-149	AA		C
"	8-161	AA		C
"	8-171	AA		C
VRS-TS2AD104J	8-127	$\overline{A A}$		C
"	8-140	$A A$		C
"	8-141	A A		C
"	8-148	AA		C
"	8-157	A A		C
"	8-168	AA		C
VRS-TS2AD124J	8-174	$A A$		C
VRS-TS2AD132J	8-145	AA		C
VRS-TS2AD133J	8-172	$A A$		C
VRS-TS2AD152J	8-126	A A		C
"	8-151	$A A$		C
VRS-TS2AD153J	7-194	A A		C
"	8-169	A A		C
/I	8-178	AA		C
VRS-TS2AD154J	8-177	A A		C
"	8-181	A A		C
VRS-TS2AD201J	7-157	AG		C
VRS-TS2AD203J	8-120	A A		C
"	8-185	A A		C
VRS-TS2AD221J	8-138	AA		C
/	8-139	A A		C
"	8-179	A A		C
"	8-183	A A		C
VRS-TS2AD223J	7-181	A A		C
"	8-122	AA		C
"	8-128	A A		C
/1	8-130	A A		C
/1	8-131	A A		C
"	8-137	AA		C
"	8-147	A A		C
/	8-150	A A		C
"	8-152	A A		C
"	8-154	A A		C
II	8-155	AA		C
"	8-156	A A		C
"	8-158	A A		C
II	8-159	AA		C
"	8-160	AA		C
"	8-170	A A		C
VRS-TS2AD224J	8-175	A A		C
VRS-TS2AD241J	8-124	A A		C
/	8-125	AA		C
"	8-142	A A		C
"	8-143	A A		C
VRS-TS2AD243J	8-115	A A		C
VRS-TS2AD271J	7-172	A A		C
"	7-178	AA		C
"	7-199	A A		C
"	7-200	A A		C
"	7-201	A A		C
"	7-202	A A		C
"	7-203	A A		C
"	7-204	A A		C
"	7-213	A A		C
"	7-214	A A		C
"	7-216	$A A$		C
"	7-217	AA		C
"	7-218	A A		C
"	7-219	AA		C
"	7-220	$A A$		C
"	7-221	$A A$		C
"	7-222	AA		C
"	7-223	A A		C
"	7-224	A A		C
/"	7-225	AA		C

PARTS CODE	NO.	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { PART } \\ \text { RAN } \end{array}$
VRS-TS2AD271J	7-226	A A		C
"	7-227	A A		C
/	7-230	A A		C
VRS-TS2AD273J	8-118	A A		C
VRS-TS2AD3R0J	7-113	A A		C
"	7-193	A A		c
VRS-TS2AD300J	8-184	A A		C
VRS-TS2AD302J	7-110	AA		C
VRS-TS2AD332J	7-210	AA		C
"	8-180	A A		C
VRS-TS2AD333J	7-148	AA		C
"	7-149	A A		C
"	8-166	A A		C
VRS-TS2AD361J	8-146	AA		C
VRS-TS2AD363J	8-129	A A		C
"	8-136	A A		C
/	8-153	AA		C
VRS-TS2AD471J	7-235	A A		C
/	7-239	AA		C
/	7-241	A A		C
"	7-243	A A		C
/	7-250	AA		C
VRS-TS2AD472J	7-128	A A		C
/	7-138	AA		C
"	8-167	AA		C
VRS-TS2AD474J	7-183	A A		C
VRS-TS2AD511J	7-115	A A		C
/	7-233	A A		C
"	8-116	A A		C
"	8-144	A A		C
VRS-TS2AD512J	7-195	AA		C
VRS-TS2AD562J	7-144	A A		C
"	7-211	A A		C
VRS-TS2AD621J	8-162	A A		C
$1 /$	8-164	A A		C
VRS-TS2AD622J	7-186	A A		C
/'	8-123	A A		C
VRS-TS2AD623J	7-182	$A A$		C
VRS-TS2AD683J	8-186	AA		C
VRS-TS2AD820J	7-145	A A		C
/	7-231	AA		C
"	7-232	A A		C
VRS-TS2AD822J	8-121	A A		C
VRS-TS2AD9R1J	8-117	AA	N	C
VRS-TS2AD910J	8-182	A A		C
VRSTS2AD1183F	7-116	A A		C
VRSTS2AD1742F	7-127	AA		C
VRSTS2AD4752F	7-111	A A		C
VRSTS2AD6040F	8-163	AA		C
VRSTS2AD8662F	7-109	$A A$		c
"	7-126	A A		C
VSBS108////-1	8-107	AE		B
VSDTC114EK/-1	7-105	AB		B
VS2SA1807-P-1	8-109	AE		B
VS2SC1740SR-1	8-106	AB		B
VS2SC2411KR-1	7-106	AC		B
VS2SC2412KS-1	7-104	$A B$		B
"	10-5	AB		B
VS2SC3415-P-1	8-108	AP		B
[X]				
XBBSD30P06000	50-B4	AA		C
XBPSD30P06K00	50-85	AA		C
XBPSE30P08K00	50-B6	AA		C
XBPSN40P06K00	50-B7	A A		C
XEBSD30P06000	50-B9	$A A$		C
XEBSD30P08000	50-B10	AA		C
XEBSD30P10000	50-811	$A A$		C
XEBSE30P10000	50-B13	A A		C
XEBSF30P08000	50-B12	A A		C
XHBSD30P05000	50-814	A A		C
XJPSD30P04000	50-815	$A A$		C
XUBSD20P06000	50-816	A A		C
[0]				
OCBBFZ89154Z/	9-35	AC		c
OCBLRH0343ZP/	9-41	A H		C
OCBLRH03562Q/	9-40	AN	N	C
OCBPCZ0160ZZ/	9-24	AE		c
OCBPCZ0173ZZ/	9-23	AF		C
0CBPJCZZ0037/	9-32	AG		A
"	9-33	AG		A

PARTS CODE	NO.	PRICE RANK	$\begin{gathered} \text { NEW } \\ \text { MARK } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \end{array}$
OCBPJT01532Z/	9-34	AE		A
OCBPKZ0194Z2/	9-22	AC		C
0CBPZZ07392Z/	9-25	A E		C
$0 \mathrm{CBUAC0004DZ/}$	9-46	AC		B
OCBUAC0056BZ/	9-44	AD		B
OCBUAC0098EZ/	9-45	AK		B
OCBUAGO139AZ/	9-43	AQ	N	B
OCBUBB0149DZ/	9- 26	A H		B
OCBUBB0166BB/	9-31	AK		B
OCBUBC0182BL/	9-29	AE		B
OCBUBC0220BZ/	9-27	AD		B
OCBUBC0280BZ/	9-30	AC		B
OCBUBDAC2700/	9-68	$A C$		B
OCBUBDAE300D/	9-70	AD		B
OCBUBDBW3R6B/	9-69	AB		B
0CBUBDBW6R2C/	9-71	AB		B
OCBUCB0112AZ/	9-37	AK		B
OCBUCCOO13DZ/	9-36	AM		B
OCBUDC0139AZ/	9-42	AN		B
OCBUDZ0052ZZ/	9-64	AG		B
OCBUEEB183CT/	9-50	AC	N	C
OCBUEEB222CT/	9-58	AC	N	C
OCBUEEB242CT/	9-61	AC	N	C
OCBUEEB271CT/	9- 59	AC	N	C
OCBUEEB330CW/	9-56	AC	N	C
OCBUEEB471CT/	9-49	AC	N	C
OCBUEEB564CT/	9-51	AC	N	C
"	9-52	AC	N	C
OCBUEEB682CT/	9-60	AC	N	C
OCBUEFC564BA/	9-47	AC		C
OCBUEFD561CC/	9-57	AD	N	C
OCBUEFER22CF/	9-48	AD	N	C
OCBUEFE391CL/	9-55	AC		C
OCBUEFE823CG/	9-53	AC		C
"	9-54	AC		C
OCBUEFF102BG/	9-62	AC		C
OCBUERABH911/	9- 66	AE		B
OCBUEZ05072Z/	9-65	AD	N	B
OCBUFBA501DC/	9-67	AC		B
OCBUGAC122GK/	9-16	AG		C
OCBUGAC221HD/	9-17	AC		C
OCBUGAD101PS/	9-14	A F	N	C
OCBUGAD470NT/	9-15	AD	N	C
OCBUGAE122NS/	9-19	AH		C
OCBUGAE221HD/	9-20	AD		C
OCBUGBQ $820 \mathrm{BR} /$	9- 5	AP		C
OCBUGCQ222AQ/	9- 12	A E		C
"	9- 13	AE		c
OCBUGCS222AP/	9-18	AC		C
OCBUGCU103BC/	9- 6	AD		C
OCBUGCU221BQ/	9-7	AD	N	C
OCBUGCZ222CK/	9- 3	AF		C
/	9-4	AF		C
OCBUGFF102ER/	9-11	AC		C
OCBUGFF 103ER/	9- 8	AC		C
OCBUGFF471ER/	9-21	A		C
OCBUGFF472ER/	9. 10	AB		C
OCBUGFF683ER/	9- 9	AD		c
OCBUGFM224HG/	9-1	AG		C
"	9. 2	AG		C
OCBUKZ0578Z2/	9-38	AH		C
"	9-39	AH		C
OCB829650003/	9-63	BD	N	B

SHARP

COPYRIGHT © 1995 BY SHARP CORPORATION

All rights reserved.
Printed in Japan.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

[^0]: Parts marked with " \triangle " is important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

