SHARP SERVICE MANUAL

FACSIMILE

model FO-3700

CONTENTS

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications I-I
[2] A look at the machine 1-2
[3] Operation Panel . 1-3
[4] Transmittable Documents I-4
[5] Installation I-5
[6] Quick reference guide I-9
CHAPTER 2. ADJUSTMENTS
[1] Adjustments 2-I
[2] Diagnostics and service soft switches 2-2
[3] Trouble shooting . 2-13
[4] Error code table 2-14
CHAPTER 3. MECHANISM BLOCKS
[1] General description 3-I
[2] Disassembly/assembly procedures 3-4
CHAPTER 4. DIAGRAMS
[1] Blockdiagram 4-1
[2] Wiring diagram 4-2
[3] Point to point diagram 4-3
[4] Connector signal name 4-4

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description 5-I
[2] Control PWB description 5-2
[3] Description of CCD board 5-11
[4] TEULIU (with Speech PWB unit) board circuit description5-1 1
[5] Description of power supply 5-1 4
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTSLAYOUT
[1] Control circuit/PWB 6-1
[2] TEULIU circuit/PWB and sensor circuit/PWB 6-7
[3] Speech circuit/ PWB 6-1 3
[4] Power supply circuit/PWB 6-15
[5] CCD circuit/PWB 6-I 7
[6] Operation panel circuit/PWB 6-1 8
[7] LCD unit circuit/PWB 6-20
[8] Print unit circuit/PWB 6-22
CHAPTER 7. OPERATION FLOWCHART
[1] Flowchart 7-1
[2] Power on sequence 7-7
CHAPTER 8. OHTERS
[1] Service Tools 8-1
[2] IC signal name 8-3
PARTS GUIDE

Parts marked with " Δ " is important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

Caution: Please use the per guage Part No. OJZC214460003 when repairing printes section. The inkjet cartridge consumeable cannot be exposed to the atmosphese for prolong periods.

CHAPTER 1. GENERAL DESCRIPTION

[1] SPECIFICATIONS

Applicable telephone line:	Public switched telephone network/ PBX
Compatibility:	ITU-TS (CCITT) G3 mode
Configuration:	Hatfduplex, desktop transceiver
Compression scheme:	Modified Huffman and Sharp special mode.
Scanning method:	Flat-bed, solid-state CCD
Resolution:	Horizontal: 8 lines/mm Vertical: Standard - 3.85 lines $/ \mathrm{mm}$ Fine/Halftone - 7.7 lines $/ \mathrm{mm}$
Recording system:	Thermal ink jet recording/Plain bond paper
Display:	7×5 dots, 1 line by 16 -digit display
Reception modes:	Auto/Manual/Answering machine
Modem speed:	9600 bps with automatic fallback to 7200,4800 , or 2400 bps
Transmission time*:	Approx. 15 seconds (Sharp special mode)
Effective recording width:	203 mm (average)
Input document size:	Automatic feeding: Width - 148 to 216 mm Length - 128 to 279 mm Manual feeding: Width - 148 to 216 mm Length - 128 to 1000 mm

Effective scanning width:	210 mm max.
Automatic document feeder:	Standard (20 sheets max.)
Halftone (grey scale):	Standard (64 levels)
contrast control:	Automatic/Dark selectable
Copy function:	Standard
Telephone function:	Standard (cannot be used if power fails)
Power requirements:	230-240 V AC, 50 Hz
Operating temperature:	5 to $35^{\circ} \mathrm{C}$
Recommend temperate:	15 to $35^{\circ} \mathrm{C}$
Power consumption:	Stand-by: 13 W Transmission: 20 W Reception: 23 W copy: 34 w
Dimensions: (Without attachment)	Width: 393 mm Depth: 285 mm Height 212 mm
Weight:	Approx. (without attachments) 6.9 kg
* Based on ITU-TS (CCITT) Sharp special mode, exclud TS phase C time only).	Test Chart \#1 at standard resolution in ing time for protocol signals (i.e.,

Options:
Option memory upgrade PWB
FO-1MD: 4Mbit DRAM (4bit $\times 1$)
-- 2pce.

FO-2MD (Not recommended)

To avoid problems with supplies, plases don't use supplies from other units. Please use new supplies, when supply changes are required.

[2] A look at the machine

Telephone line jack (TEL. LINE)
The telephone line is inserted into this jack.
[3] Operation Panel

This scans the document for
This scans the document for
transmission and copying.

REDIAL key Use this key to automaticallv redial the last number dialled. Also used as the PBX Recall "R" key after pressing HOLD key.

SPEED DIAL key
Press this key to dial a
Speed Dial number.
SPEED DIAL key
Press this key to dial a
Speed Dial number.
SPEED DIAL key
Press this key to dial a
Speed Dial number.
Liquid crystal display
Displays various messages during operation and programming.

MEMORY key
Use this key to store a
scanned document in
memory before transmitting it.
RECEPTION MODE key
Use this key to select the mode of reception. Use this key to adjust the resolution and contrast for transmitting or copying a document.

FUNCTION key

Use this key to select various special functions. - Prompts indicating selections will appear on the display.

Nurneric keys
Use these keys to dial and store numbers.

HOLD key
Press thii key to put the other party on hold during a telephone conversation. Also used in conjunction with the REDIAL key for PBX Recall.

SPEAKER key Press this key to dial a number without picking up the handset.

STOP key
Press this key to stop operations before they are completed.

START/COPY key
Use this key to start
transmission, reception,
or copying.

[4] Transmittable Documents

1. Document Sizes

Normal size	width	$148-216 \mathrm{~mm}$
	length	$128-279 \mathrm{~mm}$

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.
** Use Document carrier sheet for smaller documents.

2. Paper Thickness \& Weight

Normal size	ADF 15 sheets	Thickness	0.12 mm
		Weight	$52-104 \mathrm{~g} / \mathrm{m}^{2}$
	ADF 20 sheets	Thickness	0.06-0.09 mm
		Weiaht	52-74.3 $/ \mathrm{m}^{2}$
Special size		Thickness	0.12-0.20 mm
		Weight	$52-157 \mathrm{~g} / \mathrm{m}^{2}$

3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball point pen, or felt-tipped pen can be transmitted.
Documents of normal contrast duplicated by a copying machine can also be transmitted.

Diazo copy (blueprint)
Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink. glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission.
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.

5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:

Normal size: max. 20 sheets (52-74.3g/m ${ }^{2}$)
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder. If force is used, double-feeding or a document jam may result.

6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.
Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width

210 mm max.

- Readable length

This is the length of the document sent minus 4 mm from the top and bottom edges.

7. Use of Document Carrier Sheet

A document carder sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $148 \mathrm{~mm}(\mathrm{~W}) \times 128 \mathrm{~mm}(\mathrm{~L})$.
- Carbon-backed documents

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracing paper written on with a soft, heavy lead pencil).
NOTES: - When using the document carrier, carefully read the instructions written on the back.
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.

[5] Installation

1. Site selection

Take the following points into consideration when selecting a site for this model.

ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine. In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.
- The ambient temperature should be between 5^{\prime} and $35^{\circ} \mathrm{C}$ (Recommend temperate 15 to $35^{\prime} \mathrm{C}$).
- The humidity should be between 30% and 85% (without condensation).

ELECTRICITY

A230-240 V, 50 Hz , grounded (3-prong) AC outlet is required.

Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone specialty stores.

2. Unpacking

Take the machine out of the box carefully, remove all packing
material. Make sure you have all the items listed below.

3. Installing the print cartridge

(1) Pull the operation panel knob on the right side of the machine forward, and open the operation panel.

(2) Open the print cartridge container. Grasp the print cartridge by the green arrow and remove it from the container.

(3) Gently remove the tape covering the nozzles on the print cartridge.

- Be careful not to touch the copper ribbon or the ink nozzles, and do not allow them to touch any surface or object. (Skin oil and dust can cause poor print quality.)

(4) Insert the print cartridge into the cradle with the green arrow on the cartridge top pointing to the green dot on the top of the cradle.

(5) Push the green arrow forward toward the green dot, 'snapping' the cartridge into place.

(6) Close the operation panel.

4. Assembly and connections

(1) Connect the handset cord to the handset and the machine as shown.

- The ends of the handset cord are identical, so they will go into either jack.
Place the handset on the handset rest.

(2) Mount the original document tray.
- Hold the tray vertically, bend it slightly at the center, and insert the tabs into the holes on the top of the machine as shown.

(3) Mount the received document tray.
- Insert the tabs on the tray into the holes on the back of the machine.
- If desired, flip the tray extender out.

(4) Mount the paper tray.
- Slide the tray in as shown until it clicks into place.

(5) Mount the original document out tray.
- Place the original document out tray on the paper tray. Slide it in or out to fit the length of the original.

(6) Insert the small modular plug which terminates the FO80TP adaptor line cord into the jack on the back of the machine marked TEL. LINE. Plug the FO80TP adaptor into the telephone jack on the wall.

(7) Plug the power cord into a $230 \sim 240 \mathrm{~V}$, grounded (3-prong) AC outlet.
Press the power switch to turn on the power.

(8) Adjust the volume switches on the left side of the machine:
- RINGING VOLUME: Set the switch at high (\mathbf{H}), medium (\mathbf{M}), or low (L) as desired.
- SPEAKER VOLUME: Adjust the setting from high (\mathbf{H}) to low (L) as desired.

Set the mode of dialing with the DIAL switch. Select "T" if you are on a touch-tone line, or " P^{\prime} " if you are on a pulse dial (rotary) line.

- Be sure to make the correct setting, or you will not be able to make a call.
- WARNING NOTICE: For all units installed in New Zealand, only the \mathbf{T} setting for tone dialing is permitted. The P setting for pulse dialing does not operate properly and must not be used.

5. Loading printing paper

Selecting paper

The inkjet printer in your FO-3700 is designed to work well with most types of plain paper. Bond paper generally produces the best results, and plain paper manufactured for high-quality photocopying is also good. However, variation in paper composition may significantly affect print quality, and you should therefore test paper (printing on both sides) before purchasing large quantities to be assured of the quality you desire.

Size and weight

A4 size paper from 60 to $90 \mathrm{~g} / \mathrm{m}^{2}$ can be used.

Printing side

Plain paper has a 'print' side which should be used to obtain the best print quality. The print side is not visible to the naked eye, so check the label on the end of the package before removing the paper. The print side will be indicated by an arrow, symbol, or wording. Remove the number of sheets you wish to use from the package, and load them in the paper tray print side up as described below.
Note:
Do not use paper which is folded, curled, or tom, as it may jam in the printer.

Loading paper

A maximum of 100 sheets of paper can be loaded in the paper tray.
Note: Do not remove the paper tray from the machine to load paper (if the tray is not correctly in the machine when paper is loaded, the paper sensor will not be able to detect the paper).
(1) Remove the original document out tray.

(2) Pull the tray extender out slightly.

(3) Fan the paper, and then tap the edge against a flat surface to even the stack.

(4) Insert the paper into the tray, print side up.

- Make sure it fits squarely against the inside of the machine.

(5) Push the tray extender back in.
- Make sure it fits snugly against the paper.

(6) Replace the original document out tray.

About the printable area

The area of the page on which the FO-3700 can print is slightly smaller than the page itself. The following dimensions are averages, and there may be slight deviation from these dimensions depending on how the paper is loaded in the tray.
Printing width: 203 mm
Printing length: The length of the page minus 1.5 mm from the top, and 12 mm from the bottom.

The FO-3700 has been set at the factory to automatically reduce the size of received documents to 92%. This can be configured for 100% reception by user switch. This ensures that data at the extreme edges of A 4 size documents is not lost.

Note: If you receive a document which is too long to be printed on one sheet of paper, the remainder will be printed on a second page.

[6] Quick reference guide

Use this guide as a convenient reminder for operating the machine after you have read the detailed instructions for each procedure in the manual.

Note: Steps which are optional are enclosed in a dotted frame:

Transmitting documents

Normal Dialling	
Direct Keypad Dialling	
Rapid Key Dialling	$\begin{aligned} & \text { Load } \\ & \text { document } \end{aligned} \rightarrow \bigcirc^{\text {Resoumont }} \rightarrow \begin{aligned} & \text { Press Rapid } \\ & \text { Key } \end{aligned}$
Speed Dialling	
Redialling	

Making voice calls

Normal Dialling	$\begin{aligned} & \text { Lift handset } \\ & \begin{array}{c} \text { or } \\ \text { press SPEAKER } \end{array} \end{aligned} \rightarrow \begin{aligned} & \text { Dial (press } \\ & \text { numeric keys) } \end{aligned} \rightarrow \begin{aligned} & \text { Lift handset if } \\ & \text { you pressed } \\ & \text { SPEAKER } \end{aligned}$
Rapid Key Dialling	$\underset{\substack{\text { Lift handset } \\ \text { or } \\ \text { press SPEAKER }}}{ } \rightarrow$Press Rapid Key$\rightarrow$Lift handset if you pressed SPEAKER
Speed Dialling	
Redlalling	PCOHAL \rightarrow Lift handset

Operations using the FUNCTION key

The following chart shows how to access FUNCTION key operations. Once you have accessed the desired operation, follow the instructions which appear in the display.

Answering machine settings	
Timer operations	$\text { Fumerom } 1$
Printing out lists	FUACTIO: (2) \rightarrow (\#) * (Press until desired item appears)
Entry mode settings	(3 3) \rightarrow \#) \qquad (Press until desired item appears)
Setting User Switches	FUMCTIO (4) \rightarrow \# \square (Press until desired item appears)
Relay Request	UHCTION O (5) \rightarrow \# or \square (Press until desired item appears)
Broadcasting	${ }^{\text {fimpron }} 6$
Multi-copying	FYMCTXN

CHAPTER 2. ADJUSTMENTS

[1] Adjustments

General

The following adjustments and settings are provided for this model, make adjustments and/or settings as necessary.

1. Adjustments

Adjustments of output voltage (FACTORY ONLY)

1. Install the power supply unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.

Output voltage settings

Output	Voltage limits	Foctoryad
+12 V	$11.4 \mathrm{~V}-12.6 \mathrm{~V}$	None
-12 V	$-12.6 \mathrm{~V}--11.4 \mathrm{~V}$	None
+5 V	$4.75 \mathrm{~V}-5.25 \mathrm{~V}$	None
$\mathrm{VM}(+24 \mathrm{~V})$	$23.3 \mathrm{~V}-24.7 \mathrm{~V}$	VR1.

$$
` \text { (Top view) }
$$

Connector No.	CNPW
Pin No.	

Fig. 1

2. Settings

(1) Telephone/Fax setting

Perform the following adjustments and settings for the telephone and facsimile functions.
a) Ringing volume

The desired telephone ring volume can be selected from among three levels: high, middle, and low.
b) Speaker volume

When the SPEAKER key is pressed, the speaker volume is adjusted with this control.
c) Dial mode selector
(tine selector)
Select \mathbf{P} (Pulse) or \mathbf{T} (Tone) according to the type of the telephone line.
P: Pulse dial telephone mode (10 PPS)
T : Tonedial tone telephone mode (Tone)

3. IC protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit. ICPs protect various ICs and electronic circuits from an overcurrent.
The location of ICPs is shown below:

(1) \quad F1 (ICP-20) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If $F 1$ is open, replace it with a new one.
In addition to the replacement of $F 1$, the factor causing $F 1$ to open must also be repaired. If not, F 1 will open again.
Replacement parts
ICP-N20 (Sharp code: VHVICPN20//-1)

FO－3700A

［2］Diagnostics and service soft switches

1．Diagnostics description

（1）Entering the diagnostic mode
Press the keys in the following sequence $\mathrm{FUNC} \rightarrow 9 \rightarrow \square \rightarrow 8$ \rightarrow \＃$\rightarrow 7$ ，and the following display will appear．
ROM1：（This code is ROM version name．） Then press the＇START／COPY＇key．Select the desired item by pressing $*$ or key or rapid key．Press the START／COPY key to go into the selected diagnostic mode．

（2）Diagnostic items

rapid key	contents
01	SOFT SWITCH MODE
02	ALL BLACK PRINT
03	ROM \＆RAM CHECK
04	AUTO FEEDER MODE
05	AGING MODE
06	PANEL CHECK MODE
07	CHECK PATTERN
0	8
09	PIGRODUCT CHECK
10	MEMALSEND MODE
11	MEMORY CLEAR
12	FSK SEN SET MODE
13	ENTRY DODE
14	ENTRY DATA SEND
15	TEL．NUMBER SET
16	CCD ADJUST MODE
17	PAPER EXIT MODE
18	PRINTER SELF TEST
19	INK TEST MODE

（3）Description of diagnostic items
01 SOFT SWITCH MODE
Used to change the soft switch settings．
After setting soft switch 22 ，the following display will appear．
PRINT SFTSW LIST and 1：YES OTHER：NO
Then＇SOFT SWITCH TABLE＇list is printed by pressing 1 key．

SOTT SWITCE ENBLE	
Sw01 $=00000010$	$\operatorname{SNT} 11=00000110$
3w02 000001000	Sw12 $=00000000$
Sw03＝00000000	Sw13－00010000
Sm04－00000000	Su14＝00000001
Sw05－00000100	คロロリตロロロロロロ
Sw06＝00000101	$\operatorname{san} 16=10001000$
Sw07 $=00001100$	Swn 7＝00000000
SME8＝01010010	$\operatorname{Sin} 18=10010010$
คロロー9ロロロロロロロ	SW2 9＝00010000
Sin10000000000	$S \mathrm{~S} 20=10000000$

02 AU BLACK PRINT
Used to check the printer head．All black pattern printable area of page is printed．
03 ROM \＆RAM CHECK
Used to check the program ROM and the work RAM area of the machine and the printer，and check the status of the printer．The ROM check is used for ROM，and a read／write matching test is used for the RAM．

The result of the machine check is given by a number of beeps， and the total result is given by printing the＇ROM \＆RAM CHECK TABLE＇list．
number of beeps

0 beep	NO ERROR
1 beep	ROM ERROR
4 beeps	SRAM ERROR
5 beeps	DRAM ERROR（Standard）
6 beeps	DRAM ERROR（Option）

OK	normal
OUT OF INK	The ink is missing．
SENSOR ERROR	The sensor for printer head is abnormal．
NOZZLE CLOGGED 1 to 3	1 to 3 nozzles are clogged．
NOZZLE CLOGGED 4 to 11	4 to 11 nozzles are clogged．
NOZZLE CLOGGED more than 11	More than 11 nozzles are clogged．

04 AUTO FEEDER MODE
Used to check auto feed function by inserting and ejecting docu－ ments．
Place documents in the hopper before entering this mode，then press the START／COPY key to start the test．As the document sensor is actuated，the document size is displayed．
05 AGING MODE
If a document is placed in the hopper，a copy is taken first．If no document is present，a sheet of test patterns is printed out every 60 minutes．
（Total 10 sheets）
06 PANEL CHECK MODE
Used to check proper key operation，Each key entry is displayed on the LCD．
The test results will be also printed．

07 CHECK PATTERN

Used to check the nozzles of the print head. The following pattern is printed out on the sheet, A total of two sheets will be produced.
(1) Frame line:

The frame line shows the print area of a page.
The horizontal ruled line at the lower end is specified with soft SW 18 bit 3. 4, and 5.
(2) Nozzle test:

The pattern is used to check for a clog in the 46 nozzles of the print head.
(3) Vertical stripes 1
(4) Vertical stripes 2
(5) Light grey
(6) All-black block:

Three all-black blocks for checking print density
(7) All white
(8) Paper feed accuracy check pattern: Used to check eccentricity of the paper feed motor.

08 PRODUCT CHECK
(Diags, 07, 06, and 03 take place in succession)
Used to carry out the CHECK PATTERN, PANEL CHECK MODE, and ROM \& RAM CHECK CAPITAL CETIERS successively.

09 SIGNAL SEND MODE
Pressing the START/COPY key after entering this mode will transmit modem signals out of the TEL Line, in the following order. Used to check the modem. (Monitor from (This is also audible from the speaker of the machine) the TEL line socket to check signals.)
[1] No signal (CML signal turn on)
[2] $9600 \mathrm{bps}(\mathrm{V} .29)$
[3] 7200bps(V.29)
[4] $4800 \mathrm{bps}(V .27 \mathrm{ter})$
[5] 2400bps(V.27ter)
[6] 300bps(FLAG)
[7] $2100 \mathrm{~Hz}($ CED)
[8] $1100 \mathrm{~Hz}(\mathrm{CNG})$
[9] PSEVDC RINGER

10 MEMORY CLEAR

Used to clear the memory. The soft switches and the user switches will be set to initial states. The following will be printed.

11 FACTORY USE ONLY
12 FSK SEND MODE
Delivers various signals of 300bps in the following data pattern at the level set by the soft switch.
$00000 \rightarrow 11111 \rightarrow 010101 \rightarrow 11110 \rightarrow 00001$
13.14. Diag \#13, \#14 are used together.

1. Press the Start key on the receive data unit first then the send unit.
13 ENTRY DATA SEND
Used to send the data registered in memory by signals of 2400 bps , and copy the registering contents.
Registering contents
[1] rapid number
[2] speed number
[3] the contents registered in the entry mode
(But date \& time is excluded.)
[4] relay tx data
[5] soft switch settings
14 ENTRY DATA RCV.
This mode is the reception mode of ENTRY DATA SEND. The received data is registered in the memory, and 'TELEPHONE LIST', 'PASSCODE LIST'. 'USER SWITCH LIST'. 'SOFT SWITCH LIST' are printed.
15 TEL. NUMBER SET
The TEL number and name registered in rapid number 01 can be copied to all rapid numbers. The first 3 characters of the copied name is changed such as "RO2".
Additionally, the TEL number and name registered in speed number 01 can be copied to all speed numbers. The first 3 characters of the copied name is changed such as "SO2".
16 CCD ADJUST MODE
Used to execute copy operation. When the STOP key is pressed, the unit goes into the waft state to adjust the CCD line alignment. When the START/COPY key is pressed again, the copy operation is resumed.

17 PAPER EXIT MODE
Used to check the recording paper feed function by inserting and ejecting recording paper. This mode will continue until recording paper is out, or the STOP key is pressed.

18 PRINTER SELF TEST
Used to check the state of the printer. This the check prints the check pattern provided by the printer driver.

19 INK TEST MODE
Used to check the state of the printer. A check pattern as with diagnostic 07 is produced when this mode is entered.

FO-3700A

2. Soft switch description

Soft switch lis

Soft switch setup

Soft switch settings stored in memory can be changed by entering data from the keyboard. SW1 through SW20 constitutes soft switches. See the soft switch listing on page 2-4 and 2-7 for the function of SW1 through SW20 settings.

How to make soft switch settings

To enter the softswitch mode, make the following key entries in sequence.
'FUNCTION', "9", "夫", "8", "\#", '7", ‘START/COPY', ‘START/COPY’
SW1 bii No. 1 through No. 8 will be displayed.

\[

\]

Press the "\#" or "*" key and bring the cursor (blinking pointer) to the bii No. which is to be changed. (The "\#" key moves the cursor to the right, and the "*" key to the left.)
Press the FUNCTION key to change the setting between 1 and 0. When the cursor is on data No. 8 position, press the "\#" key to display SW2 data No. 1 through No.8. pressing the START/COPY button shifts cursor to the next soft switch

	Bit No.	1	2	3	4	5	6	7	8
	Display	SWO2 $=$	0	0	0	0	1	0	0

Make settings in the same way as for SW2. Proceed to the settings of SW3 to SW20 in the same manner
When the cursor is on SW20 data No. 8 position as shown below, press the "\#" key to finalize all settings.

To finish the settings halfway between SW1 and SW20, press the STOP key. in this case, the setting being performed to the SW No. on display will be nullified while settings performed to the preceding SW Nos. remain in effect.

Soft switch functional description

SW1 No. 1 Line density choice
Used to set the transmission mode which is automatically selected when the MODE key is not pressed. In copy mode, however, the fine mode is automatically selected unless the MODE key is manually set to another mode.

0 : Standard
1: Fine
default: 0
SW1 No.2, 3 Resewed
Set to '0'.

SW1 No. 4 Activity report print
This soft switch is used to select; whether or not to print out the activity report when the memory is full. An activity report can be printed when the foilowing key entry command is made.
'FUNCTION', "2", "\#", 'START/COPY
After producing the activity report, all the data in the memory will be cleared.
When the switch function is set to " 0 " (NO), the data in the memory will be deleted from the oldest as it reaches the maximum memory capacity.

0 : NO (first data lost when memory is full)
1: YES (when memory is full)
default: 0
SW1 No. 5 - 6 Reserved
Set to "0".

SW1 No. 7 Reserved

Set to 'l'.

SW1 No. 8 Automatic switching mode

This soft switch is used to set the auto telfax select mode or to set the normal fax mode.

0 : Switching to fax only
: TEL/FAX automatic switching
Default: 0

SW2 No. 1 Reserved

Set to "0".

SW2 No. 2 Reception 4800 BPS fixed

When line conditions warrant that the reception take place at 4900 BPS repeatedly. It may improve the success of reception to start at 4900 BPS. This improves the receiving document quality and reduces handshake time due to fallback during training.

0: NO
1: YES
Default: 0
SW2 No. 3 Reserved
Set to "0".

SW2 No. 4 CED tone-signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppresser switch, causing a communication problem. Though this soft switch is normally set to " 0 ", it should be set to ' 1 ' so as to change the timer between CED tone and DIS signal from 75 ms to 500 ms to eliminate the communication problem caused by echo.

0: 75 ms

1: 50oms
Default: 0

SW2 No. 5 Line equalizer

Used to set the Line equalizer function.
$\mathrm{On} \rightarrow 7.2 \mathrm{~km}$
Off $\rightarrow 0 \mathrm{~km}$
$0: \mathrm{Off} \rightarrow 0 \mathrm{~km}$
$1: \mathrm{On} \rightarrow 7.2 \mathrm{~km}$
Default: 1
SW2 No. 8 ~ 7 Reserved
Set to '0'.

SW2 No. 8 "NOZZLE CLOGGED" display select

You can select whether the prompt 'NOZZLE CLOGGED' is displayed or not when nozzie on the printer cartridge dogged.

0 : Not display
1: Display
Default: 0
SW3 No. 1 MAX.page length for transmit, receive and copy
Used to set the maximum page length.
To avoid possible paper jam, the page length is nomally limited to 1 meter for copy or transmit, and 1.5 metres for receive.
It is possible to set it to 'No limir to transmit a-long document, such as a computer print from, etc. (In this case, the receiver must also be set to no limit.)

0: 1 m max. for copy and transmit, $1,5 \mathrm{~m}$ max. for receive (std)
1: No limit

SW3 No. 2 Footer print
When set to "1", the date of reception, the sender's machine No., and the page No.are automatically recorded at the end of reception.

0: off
1: On
Default: 1

SW3 No. 3 Sender's phone number registration

Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to ' 1 ', new registration of the senders phone number is disabled to prevent accidental wrong input.

0 : Can be changed
1: cannot be changed

Default: 0

SW3 No. 4 Total communication hours and pages print

Used to make a choice of whether the total communication time and pages are recorded in the activity report.

0: Yes
1: No
Default: 0
SW3 No.5, 6 Resewed
Set to "0".

SW3 No. 7 CSI transmission

CSI signal contains the sender's phone number registered in the machine.

0: Transmitted
1: Not transmitted
Default: 0
SW3 No. 8 Communication error treatment (reception) in RTN

sending

Used to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to 'l', communication error is judged as no error.

0 : Transmission error
1: Not transmission error
Default: 0

SW4 No. 1 Protocol Monitor 1

If set to " 1 ", protocol is printed at communication error.
0: off
1: On
Default: 0

SW4 No. 2 Dialing pause

The length of the pause inserted between telephone numbers of direct dial contraction. can be adjusted. Selection of $4 \mathbf{s e c}$ or $2 \mathbf{s e c}$ pause is available.
$0: 2$ seconds
$1: 4$ seconds

Default: 0

SW4 No. 3 Reserved

Set to "0".
SW4 No. 4 NSF receive acknowiedge in G3 transmit mode
Used to make a choice of whether reception of NSF (DIS) is acknowledged after receiving two NSFs (DISs) or receiving one NSF (two DISs).
It may be useful for overseas communication to avoid an echo suppresser problem, if set to 1
$0: 1$ for NSF reception, 2 for DIS reception
1: 2 times

Default: 0

SW4 No. 5 Non-modulation carrier in V29 transmission mode

Though transmission of non-modulated carrier is not required for transmission by the V29 modem according to the CCITT Recommendation, it may be permitted to send non-modulation carder before the image signal to avoid an echo suppresser problem.
It may be useful for overseas communication to avoid an echo suppresser problem, if set to 1 .

$$
0: \text { No }
$$

1: Yes
Default: 0

Default: 0

served

f^{f-}, Reserved

8 Modem speed

6 del mine the initial modem speed. The default is 9600bps. coessary to program it to a slower speed when frequent is encountered, in order to save the time required for scedure.
429 9600 BPS
7200BPS
V27ter 4800BPS
: 2400BPS
t: ow I

/ No. 1 DTMF 3 digits at remote reception

d to make a choice of whether to use the 3 digits code or 2 digits - for remote receive.

0 : No $0 * \rightarrow 0$ O
1: Yes $1 * \rightarrow 10 *$
fault: $0 \quad 5 * \rightarrow 50 *$
$9 * \rightarrow 90 *$
SW 15 No. 2 DTMF detection cycle/off time
: Used to choose the cycle time and off time.
"Normally set to " 0 ". When the DTMF signal not detected, You can set to ' 1 '. The DTMF detection is shortened.

0 : Cycle time 93 ms
Off time 28 ms
1: Cycle time 58 ms
Off time 8 rns
Default: 0

SW15 No. 3 A.M mode CNG detecting

Choke is made whether the CNG signal is not detected in A.M (Answering machine) mode.

0: Yes
1: No
Default: 0

SW15 No. 4 Protection from echo

Used to protect from echo in reception.

$$
0: \mathrm{No}
$$

1: Yes
Default: 0

SW15 No. 5 CNG detection time (Lower limit)

Used to determine the lower limit of CNG detect time.
0 : ON 325ms
OFF 2450 ms
1: ON 225ms
OFF 2150 ms
Default: 0

SW 15 No. 6 CNG detection time (Upper limit)

Used to determine the upper limit of CNG detect time.
0 : ON 675 ms
OFF 3550 ms
1: ON 775ms
OFF 3850 ms
Default: 0
SW15 No.7, 8 Number of CNG signal detection in A.M mode
Used for detection of CNG in 1-4 pulses in answering machine mode.

00: 1 time
01: 2 times
10: 3times
11: 4 times
Default: 10

SW16 No. 1 Number of CNG signal detection at the TELFAX

 automatic switching modeUsed for detection of CNG in one or two pulses in the TEL/FAX automatic switching mode

0 : Once
1: Twice
Default: 1
SW16 No. 2 - 4 Reserved
Set to "0".

SW16 No. 5 Time format

Choice is made for the format of time display
0 : 12 hours mode (AM/PM)
1: 24 hoursmode
Default: 1

SW16 No.6, 7 Date format

Used to set entry of date into activity report and LED format according to specifications of country.

00: day/month/year
01: month/day/year
10: year/month/day
11: year/month/day (Japan mode: month is not English)
Default: 00

SW 6 No. 8 Vertical resolution

Used to set the Vertical resolution.
0: 300 dpi
1: 7.7 line/mm
Default: 0
SW 7 No.1-8 Off hook hold
Used to set 'Off hook hold' time by binary input.
00000000: 0 second
\downarrow
11111111: 255seconds
Default: 00000000

SW18 No. 1 Cut off mode (Copy mode)

When in copy, if the scanned data is out of the range of recording, the operator has one of the choices below using the switch.

0 : Continue: Data is printed onto the next page.
1: Cut off: Data scanned out of the limit is cut off.
Default: 1

SW18 No. 2 Cut off mode (Com. mode)

When receiving, if the data is out of the range of recording, the operator has one of the choices below using the switch.

0 : Continue
1: cutoff
Default: 0

SW18 No.3, 4 Paper select

Used to set the media size. (Letter /A4 / Legal) check pattern only
00: Letter size
01: A4
10: Legal
Default: 01

SW18 No. 5 Extended print area

Used to choose of extended print area enable or disable.
0 : Disable
1: Enable
Default: 0

SW18 No. 6 ~ 8 Vertical scale method

Used to choose of Vertical scale method.
Method used to create the additional rows needed to provide the proper vertical size.

000: Blank rows
001: Duplicate last row
010: Smoothing
011: Constant line density (Duplication)
100: Constant line density (Smoothing)
Default: 010

SW19 No.1-4 Number of rings for auto receive

When the machine is set in the auto receive mode, the number of rings before answer is made cañe selected. It may be set from one to nine rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook before connection is made to the facsimile while ringing, it should be programmed to the user's choice. If a facsimile calling beep is heard when the handset is taken off the hook, press the START/COPY key and put the handset on the hook to have the facsimile start receiving. If it is set to above 9 , receive rings are automatically set to 1 .

0001: 1 time
1001: 9 times
Default: 0001

SW19 No. 5 - 8 Automatic Switching from manual to auto receive mode

Choice is made to after how many rings in the manual receive mode it should be automatically changed to the facsimile answer mode or remain in the manual receive mode. Entering a binary number 0 will force the machine to remain in the manual answer mode. If a number between 1 and 9 is entered, the machine will go into the answer mode after the given number of rings. However, it can be used as an ordinary telephone if the handset is taken off the hook before this programmed number has elapsed. Entry of a number above 9 will set the machine to 0 .

0000: Does not change
0001: 1 times
\downarrow
1001: 9 times
Default: 0000
SW20 No. 1 - 4 Dummy ringer transmission level (dB)
Pseude-ringer sending level setting $0 \mathrm{dBm} \sim-15 \mathrm{dBm}$.
0000: OdBm
\downarrow
1111: -15 dB
Default: 1000 (-8 dBm)

SW20 No.5-6 Reserved

Set to '0'.

SW20 No. 7 Remote operation auto disable

Selection of remote operation ($5, *$) inhibition after passing a certain time from reception of Remote operation auto disable.

0: Not inhibited.
1: Inhibited automatically after 7 sec .
Default: 0

SW20 No. 8 Reserved

Set to ' 0 '.

[3] TROUBLE SHOOTING

Refer to the following actions to troubleshoot any of problems mentioned in I-6.
[1] A communication error evoked.
[2] Image distortion produced.
[3] Unable to do overseas communication
[4] Communication speed slow liable to failback.

- Increase the transmission level SOFT SWITCH 7-5 678 Can be used in case [1] [2] [3]
- Decrease the transmission level SOFT SWITCH 7-5 678 Can be used in case [3]
- Apply line equalization SOFT SWITCH 2-5 Can be used in all cases.
- Slow down the transmission speed SOFT SWITCH 14-5 678 Can be used in case [2] [3]
- Replace the LIU PWB. Can be used in all cases.
- Replace the control PWB. Can be used in all cases.
* If transmission problems still exist on the machine, use the following format and check the related matters.

[4] Error code table

Transmission errors

E-O	Able to recognize handshake signal, but it has errors.
$\mathrm{E}-\mathrm{i}$	Cannot recognize the handshake signal from the receiver side.
$\mathrm{E}-2$	Line disconnected during transmission.
$\mathrm{E}-3$	Line disconnected after modem speed fall-back.
$\mathrm{E}-4$	tine disconnected during multi-page transmission.
$\mathrm{E}-6$	Cannot recognize the handshake signal for next page at receiver side.
$\mathrm{E}-7$	No response from receiver side or 'disconnect sianal" is received at transmitter side.

Reception errors

E-O	Able to recoonize handshake sianal. but it has errors.
E-I	Line disconnected during reception.
E-2	Cannot recoanize the handshake sianal from the transmitter side.
E-3	Cannot recognize the last handshake signal from the transmitter side.
E-4	Cannot recognize the handshake signal for next page from the transmitter side in the case of mode change.
E-5	Cannot recoonize the handshake sianal for next pace from the transmitter side.
E-7	No response from transmitter or 'disconnect signal' is received at receiver side.

CHAPTER 3. MECHANISM BLOCKS

[1] General description

1. Document feed block and diagram

Fig. 1

2. Document feed operation

1) The document placed in the hopper actuates the front sensor. After one second, the pulse motor starts to drive the paper feed roller. The document is automatically taken up into the machine, and stopped at the original sensor.
2) After a specified number of pulses are received from the document lead edge being sensed, scanning is started.
3) When a specified number of pulses are received from the document rear edge being sensed, scanning is terminated and the document is fed through.
4) If the front sensor is active (i.e., another document is in the hopper), when the preceding document scanning is completed and and it is fed out, the next document is taken up into the machine. If the front sensor is not active (i.e., there is no document in the hopper), when the document is fed out, the operation is terminated.

3. Hopper mechanism

3-1. General view

Fig. 2

The hopper is used to align documents with the document guides adjusted to the paper width.
NOTE: Adjust the document guides before and after inserting the document.

3-2. Automatic document feed

1) Use of the paper feed roller and separation rubber plate ensures error-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separation rubber plate

Separation rubber plate Paper feed spring

Fig. 3
3-3. Documents applicable for automatic feed

	4×6 series (788mm x 1091mm x 1000 mm sheets)		Square meter series	
	Minimum	Maximu	Minimum	Maximu
Feeder capacity	20 sheets. max.			
Paper weight	45 kg	64.3 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$74.3 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.09 mm	0.06 mm	0.09 mm
Paper size	$\begin{aligned} & \text { B6 }(128 \mathrm{~mm} \times 182 \mathrm{~mm}) \sim \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}) \text {. Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \end{aligned}$			
Feeder caoacitv	15 sheets. max.			
Paper weight	45 kg	90kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	104g/m ${ }^{2}$
Paper thickness (ref.)	0.06 mm	0.12 mm	0.06 mm	0.12 mm
Paper size	$\begin{aligned} & \text { B6 (} 128 \mathrm{~mm} \times 182 \mathrm{~mm} \text {) - } \\ & \text { A4 (} 210 \mathrm{~mm} \times 297 \mathrm{~mm} \text {) Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \end{aligned}$			
Paper quality	High quality paper or equivalent			

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.

Documents corresponding to a paper weight heavier than 64.3 kg $\left(74.3 \mathrm{~g} / \mathrm{m}^{2}\right)$ and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.
Documents heavier than 135 kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.

NOTES: 1) Curled edge of documents, if any, must be straightened out.
2) Do not load the documents of different sizes and/or thicknesses together.

Paper feed roller
Fig. 4

3-5. Documents requiring use of document carrier

1) Documents smaller than $B 6$ ($128 \mathrm{~mm} \times 182 \mathrm{~mm}$).
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curts, especially those whose surface is curled (maximum allowable curl is 5 mm).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carder.)
6) Documents containing an easily separable writing material (e.g. those written with a lead pencil).
7) Transparent documents.
8) Folded or glued documents. Document in document carrier should be inserted manually into the feeder.

4. Document release

4-1. Cross section view
(RIGHT SIDE)

Fig. 5

4-2. General

When the Release Lever is pulled by hand in the direction of arrow A, the latch is released and the upper document guide moves on its axis in the direction of the arrow. The feed rollers, the separation rubber plate, and the pinch rollers become free to make it possible to remove the document.

5. Optical system

(1) General view

Fig. 6

(2) Composition

The optical system is composed of the document feed mechanism, the lamp, the reflecting mirrors, the focusing lens, the CCD sensor, and the read process circuit.

5-1. Lamp

The lamp is used to expose the document.

5-2. Lens

The lens is used to focus the light reflected from the document on the CCD elements.

Fig. 7

5-3. CCD

The CCD (charge coupled device) image sensor consists of a photodiode array which converts the intensity of light reflected from the document surface into a series of analog voltages which are then stored in an analog shift register. The series of analog voltages are then converted into a digital equivalent by a black/white binary logic circuit.
(Example) Scan signal output waveform

Fig. 8

1) The minimum output from the $C C D$ at the maximum scan width of document (216 mm) must be more than 50% of the peak value.
2) The peak output must be about 150 mV under room temperature to avoid CCD saturation.

[2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.
 sensor lever ass'y, etc.

2. Remove the original guide lower, the paper feed roller, the original sensor lever ass'y, and the front sensor lever ass'y.
<Note 1> When removing original guide lower ass'y (3), be careful not to damage the front sensor lever.
<Note 2> When removing the front sensor lever ass'y, refer to the enlarged view. Press lever section (A) in the arrow direction to put the lever in the dotted line place. Then turn the lever shaft and remove it upwards.
Parts list (Fig. 2)

No.	Part name		
1	Medium cabinet	1	
2	Screw (3 x 8)	5	
3	Original guide lower ass'y	1	
4	Paper feed roller ass'y	1	
5	Original sensor lever ass'y	1	
8	Front sensor lever ass'y	1	
7	Screw (3 x 8)	2	
8	Pinch pressure spring	2	

[Note for assembly]

1. Be careful to the installing direction of pinch pressure spring (8).
2. When attaching original sensor lever ass'y (5) and front sensor lever ass'y (6) to the sensor holder, refer to the enlarged view for the spring position and the attachment procedure.
3. When attaching original guide lower ass'y (3), note the following points:

- Check that the scanning glass is free from dust, finger prints, etc.
- Be careful not to damage the front sensor lever.
- Lock the four pawls and fit them with screws.

4	Drive system unit

1. Remove the PWB section (the control PWB, the LIU PWB, the power unit) according to procedure $\mathrm{l}-\mathrm{a}$, and remove the cable from the cord keep.
). Remove scanner section (3) in Fig. 4 from lower cabinet (1).
<Note 1> Be careful not to hang PWBs by the cable.
<Note 2> Remove two pawls and one rib. (Refer to the enlarged view.)
:. Remove the drive system unit and the transport roller.

Parts list (Fig. 4)

No.	Part name	Q'ty
1	Lower cabinet	1
2	Screw	5
3	Scanner section	1
4	Screw	2
5	Drive system unit	1
6	Transport roller ass'y	1
7	Reduction gear	2
8	Reduction gear	3
9	Screw	2
10	Drive motor	1
11	Motor mounting plate	1
12	Drive frame	1

Fig. 4

[Note for assembly]

1. When attaching drive motor (10) to drive frame (18), be careful of the attaching direction. The connector PWB must be in the upper side. (Refer to Fig. 4.)
2. When attaching reduction gears (7) and (8), note the following points:

- Apply Molykote to the mounting shaft of drive frame (12) reduction gear, and the teeth surfaces of reduction gears (7) and (8).

FO-3700A

 Upper cabinet section (Panel, hopper,
 etc.)
 a. Remove the scanner section from the lower cabinet according to procedures 4-a, b.
b. Remove the upper cabinet section from the upper frame section, and remove the panel PWB, keys, and hoppers.
Parts list (Fig. 5)

No.	Part name	Q'ty	No.	Part name	O'ty
1	Upper frame ass'y	1	10	Screw (2×6)	21
2	Screw (3×8)	4	11	Pane! PWB	1
3	Upper cabinet section	1	12	Panel cable	1
4	Release knob	1	13	Start/stop key	1
5	Screw (3x6)	1	14	Auto/manual select key	1
6	Pinion gear	1	15	Dial key	1
7	Hopper spring	1	16	One-touch key	1
8	Hopper guide (R)	1	17	Function key	1
9	Hopper guide (L)	1	18	Upper cabinet	1

the ribs and connect the frames.

(c) Check that the CCD cable is not in contact with the bezel supports. angle with the LCD PWB.

Fig. 5

[Note for assembly]

1. When connecting panel cable (12), insert the white cable as shown in Fig. 5.
2. When attaching panel PWB (11), note the following points:

- Check that the LCD installing section (B) in Fig. 5) of upper cabinet (18) and the glass surface of the LCD are free from dirt.
- When tightening screws (10) , be sure to tighten \square and \square first.
- For wiring of the LCD cable, refer to the enlarged view.

3. For attaching direction of hopper spring (7), refer to the enlarged view.
4. When attaching upper cabinet section (3) to the upper frame ass'y, put the upper frame ass'y rib under the upper cabinet rib. (Refer lo the enlarged view.)
5. For wiring of the panel cable, refer to the note in Fig. 5.

6	Upper frame section (original guide upper section)

3. Remove the scanner section from the lower cabinet according to procedures 4-a, b.
4. Remove the upper cabinet section from the upper frame section according to procedure 5-b.
5. Remove the release lever, the original insertion guide, the pinch roller, and the transport roller from me upper frame section.
<Note 1> Use a small screwdriver to remove screw (14) and be careful not to scratch pinch roller (15).

Put the concave

<Note> Insert the rib to eliminate slacks

[Note for assembly]

1. When attaching paper feed spring (18), be careful not to scratch separation rubber plate (29), and insert securely. (Refer to the enlarged view.)
2. When attaching stopper plate (17), apply Molykote to the stopper section (referring to the enlarged view), and place the concave section in the front surface, and attach open/close spring (16) as shown in Fig. 6. Be careful not to reverse me spring hook.
3. For attaching direction of original insertion guide (10), refer to the enlarged view.
4. When attaching release lever (6), apply Molykote to the enlarged view section of Fig. 6, and attach release lever return spring (5) as shown in the enlarged view. Be careful to the spring hook direction.
5. For wiring of discharge brush grounding cable (3), refer to the enlarged view.

[Note for assembly]

1. For wiring of printer power cable (6) and printer signal cable (7) and the core attaching position, refer to the enlarged view of Fig. 7.
2. Attach printer grounding cable (5) at the angle of 45 degrees. (Refer to Fig. 7.)
3. Note for attaching ink Jetter unit (3)

- Before attaching the ink jetter unit, pass the cables connected to the PWB section through the square hole and put them out.
- Be careful not to pinch the cables, and install the ink jetter unit to the positioning boss of the lower cabinet and fix it with a screw.

[2] Wiring diagram

\qquad

[4] Connector signal name [1/2]

Control PWB/Operation panel

Connector signal name [2/2]

TELILIU PWB

	SPEECH PWB \rightarrow TELLIUPWE
1	MO+
2	мо-
3	4
4	\underline{L}
5	м 3
6	${ }_{\text {IX }}+$
7	RX ${ }^{+}$
-	nx-
9	MUTE
10	rx-
\because	N.
12	NC .
13	vod
14	vss
15	мо
18	T0
17	$\overline{\text { XMUTE }}$
18	OP
19.	¢8
20	Hs

	TELLIUPWB
1	-
2	A-WIRE
3	8.WIRE
4	-

(JST) B2B-PH-KS \begin{tabular}{|c|c|}
\hline CNLED \& $\begin{array}{l}\text { TELAIU PWB } \\
\rightarrow \text { LED NMP }\end{array}$

\hline \&

 1 IEDON

1

\hline 2
\end{tabular} $+24 \mathrm{~V}$

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description

1. General description

The compact design of the control PWB is obtained by using two gate arrays and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

2. PWB configuration

Fig. 1 PWB configuration

1) Control PWB

The control PWB controls peripheral PWB's, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a l-chip modem (R96DFXL) which is installed on the control PWB.

2) TELLIU

This PWB controls connection of the telephone line to the unit.

3) Power supply

This provides voltages of $+5 \mathrm{~V}, \pm 12 \mathrm{~V}$, and $+\mathbf{2 4 V}$ to the control PWB and the Inkjet Printer.

4) Panel

me panel allows input of the operation panel and LCD display.

5) Option memory board (FO-1 MD)

This unit is the use of an extend memory.
If this unit is setted, the memory function is increased.

3. Operational description

Operational descriptions are given below:

- Transmission

When a document in loaded in the standby mode, the state of the document sensor is sensed via the gate array A. If the sensor signal was on, the motor is started to bring the document into the standby position. With depression of the START/copy key in the off-hook state, transmission takes place.
Upon depression of the START/copy key, the CML relay is set active which switches the line from the telephone to the modem. Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the Image processor (M66333), the signal scanned by CCD is sent to the internal AD converter to convert the analog signal into binary data. This binary data is transferred from the Image processor to the image buffer and encoded and stored in the transmit buffer of the DRAM. The data is then written to the modem according to interruption by the data transmission request signal from the modem. The modem madulates the code data and sends signals through the TELIUPWB.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START/copy key in the off-hook mode in the case of the manual receive mode, or Cl signal detection by the LIU in the automatic receive mode, causes the CML relay to activate to initiate the receive operation.
First, the CPU controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C, the serial data from the modem is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the gate array A (F255011) which is then converted from parallel to serial form to be sent to the printer unit. The data is printed by the printer unit.

- Copy operation

To make a copy on this facsimile, the START/copy key is pressed when the machine is ready with a document on the document table and the telephone set is in the on-hook state.
First, depression of the START/copy key advances the document to the first scan line. Similar to the transmitting operation, the image signal from the CCD is converted to a binary signal in the DMA mode via the Image Processor which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the printer unit which is printed. The copying takes place as the operation is repeated.

[2] Control PWB description

1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 6 blocks.

Fig. 2 Control PWB functional block diagram

2. Description of each block

(1) Main control block

The main control block is composed of an 8-bit microprocessor HD64180, ROM (256KByte), SRAM (32KByte), and DRAM (640KByte). Devices are connected to the bus to control the whole unit.

1) HD64180 (IC4, main CPU) . . . pin-80 QFP

This is a CMOS 8-bit microprocessor. A high-speed CPU (compatible with $\mathbf{Z 8 0}$ upper class models) and peripheral functions are incorporated in one chip.
This system allows the following functions.

- Memory Management Unit (MMU)
- DMA controller (2 channel); channel 0: For read data transfer channel 1: For print data transfer
- Timer
- Interruption; As external interrupt.

INTO: Modem interrupt.
INT1: Peripheral I/O control section interrupt.
INT2: RTC detection interrupt.
Operating speed is 8 MHz .
In addition, 16 MHz clock is internally generated with the ceramic oscilator.
For reset when power is turned on, a LOW signal of about 200 msec is supplied to RESET terminal.
2) $27 \mathrm{C020}$ (IC114, main ROM): pin-28 DIP

EPROM of 2 MKbit equipped with software for the main CPU.
3) μ PD43257 (IC5): pin-28, SOP

Line memory for the main CPU system RAM area.
Memory of recorded data such as daily report and auto dials. When power is turned off, backup is made with a lithium battery.
4)HM514800 (IC11 DRAM): pin-28, SOJ and GM71 CA256A (IC10 DRAM): Pin-26, SOJ
Image memory for cording/recording process.

- Memory for recording pixel data at no paper.
- Memory for ECM

5) $\mathbf{F 2 5 5 0 1 1}$ (IC7, gate array A)

The following functions are incorporated to support the main CPU.

- Printer interface
- Read system control
- Mechanism control
- I/O port

HD64180 (IC4) terminal descriptions

Classification	Code	Terminal No. (FP-80)		Name and pin function
Jower GND	VCC	32	Input	Power supply: Connected to the power source. (+5 V)
	VSS	12, 34, 72, 73	Input	Ground: Connected to the power source. (Ground)
XTAL clock	XTAL	74	Input	Connected to a crystal oscillator. Frequency must be two times as great as ϕ clock frequency. When inputting an extemal clock to EXTAL pin, open XTAL pin.
	EXTAL	76	Input	Connected to a crystal oscillator. Also used as an external clock input pin. The external clock input frequency must be two time as great as ϕ clock frequency.
			Open state uit configuratio	nal clock input th a crystal oscillator
	ϕ	71	Output	System clock: Provides system clock to the peripheral devices.
Zeset	RESET	80	Input	Reset: LOW when the LSI is reset state.
Address bus	$A_{0}-A_{18}$ $A_{0}-A_{19}$ (HD64180R1; FP-80, CP-68) (A18 is commonly used with TOUT.)	$\begin{gathered} 8 \sim 11 \\ 13 \\ 15-21 \\ 24-29 \\ 31,33 \end{gathered}$	Output (Three-state)	Address bus: The address to make access to the memory space. HIGH only in the following cases: (a) Reset (b) Bus control is transmitted to another device. (When $\overline{\text { BUSACK }}=$ " 0 " by BUSREQ $=" 0 "$) A18 is multiplexed with TOUT. The timer control register TOC0 and TOCI bits determine which output to take.
Jata bus	D0-D7	35-41, 44	Input/Output	Data Bus: 8-bit bidirectional data bus
Vemory l/O nterface signal	$\overline{\mathrm{RD}}$	70	Output (Three-state)	Read: Shows that the LSI is in read cycle. At that time, the data bus is in output mode.
	$\overline{\mathrm{WR}}$	69	Output (Three-state)	Write: Shows that the LSI is in write cycle. At that time, the data bus is in output mode.
	$\overline{M E}$	66	Output (Three-state)	Memory Enable: Shows that read/write operation of the memory is being executed. LOW in the following cases: (a) Command fetch, operant read (b) Memory access in DMA cycle (c) Refresh cycle
	$\overline{\text { IOE }}$	65	Output (Three-state)	I/O Enable: Shows that I/O read/write operation is being executed. LOW in the following cases: (a) Read/write of data in executing an I/O command (b) I/O access in DMA cycle (c) $\overline{\mathrm{NT}}_{0}$ acknowledge cycle
	WAIT	77	Input	Wait: Used to extend read/write cycle of I/O or the memory. When this input is LOW at the falling edge of T2, TW state is inserted next to T2. When it is LOW at the falling edge of TW, another TW is inserted again next to the preceding one.
	E	67	output	Enable: Synchronizing clock for peripheral LSI's of the 6800 system.
System control signal	BUSREQ	79	Input	Bus Request: Used for other devices to request bus free to this LSI. When driven LOW, the CPU stops execution of commands and drives some parts ($\overline{\mathrm{RD}}, \mathrm{WR}, \mathrm{ME}, \overline{\mathrm{IOE}}$) of the address bus, data bus, and memory interface signals HIGH.
	BUSACR	78	output	Bus acknowledge: Shows that the CPU received $\overline{\mathrm{BUSREQ}}$ signal and freed the bus. When a device which outputted BUSREQ signal receives BUSACK signal, it acknowledges that it has gained bus control

HD64180 (IC4)

Clasaificatlon	Code	Terminal No.		Name and pin function		
System control signal	HALT	61	output	HALT: LOW when the CPU executes HALT or SLP command, and shows to the outside that the CPU is in HALT mode, SLEEP mode, or SYSTEM STOP mode. Used with ST signal and $\overline{\mathrm{LIR}}$ signal to show the operation status such as the internal DMA operation and the CPU operation mode.		
	$\overline{\mathrm{LIR}}$	68	output	Load Instruction Register: Shows that the cycle which is under operation is the operation code fetch cycle.		
	ST	7	output	Status: Shows the operation status. Do not connect with a pull-down resistor.		
				ST ${ }^{\text {HALT }}$	$\overline{\text { LIR }}$	Operation status
				0 1	0	CPU operation (First operation code fetch cycle)
				1 1	0	CPU operation (Second, third operation code fetch cycles)
				1 1	1	CPU operation (Machine cycle other than operation code fetch cycle)
				1 Not fixed.	0	DMA operation
				0 0	0	HALT mode
				10	1	SLEEP mode SYSTEM STOP mode
System control signal	$\overline{\mathrm{REF}}$	64	output	Refresh: When LOW, shows that the CPU is in DRAM refresh cycle. When LOW, refresh addresses are outputted to the lower 8 bits of the address bus ($A_{0}-A_{7}$). Refresh interval is programmable in $10,20,40$ or 80 state.		
Interrupt signal	$\overline{\mathrm{NMI}}$	1	Input	Non-Ma\&able interrupt: This is the non-maskable intterrupt request terminal.		
	\NT0	4	Input	Interrupt 0: Maskable interrupt level 0 request terminal. In leve 0 , there are three operation mode:		
				Operation mode		Content
				0	mand	n the data bus is execu-
				1	nmanc 8H.	executed from address
				2	or sy	
	$\overline{\mathrm{NT}}_{1}$	5	Input	Interrupt 1, 2: Maskable interrupt level 1 and 2 request terminals. Vector system		
	$\overline{\mathrm{NT}}_{2} \cdots$	6	Input			
DMA signal	DREQ $_{0}$ (Commonly used with CKAO.)	50	Input	DMA Request for Channel 0: Internal DMAC transfer (to channel 0) request terminal. With this signal, the internal DMAC can operate in synchronization with the external I/O devices. The internal DMAC channel 0 supports the following transfer types: (a) Between memories (b) Between memory and $1 / 0$ (c) Between memory and memory map I/O This terminal is multiplexed with CKAO terminal. When DMA channel 0 transfer mode is set to 'Between memory and I/O (including memory map I/O)", $\overline{\mathrm{DREQ}}_{0}$ terminal serves as an input terminal.		
	TEND 0	55	output	Transfer End for Channel 0: Internal DMAC channel 0 transfe sent signal. Driven LOW in synchronization with the last data transfer write cycle. This terminal is multiplexed with CKA1 terminal. When ASCI control register A channel 1 is set to ' 1 ", it serves as $\overline{T E N D}_{0}$ terminal.		
	$\overline{\text { DREQ }}_{1}$	59	Input	DMA Request for Channel 1: Internal DMAC transfer (to channel 1) request terminal. Channel 1 supports only transfer between memory and I/O.		

HD64180 (IC4)

Classification	Code	Terminal No.		Name and pin function
DMA signal	TEND 1	60	output	Transfer End for channel 1: Internal DMAC trasnfer (to channel 1) end signal.Driven LOW in synchronization with the last data transfer write cycle.
Serial I/O signal (ASCl channel 0)	TXA0	48	output	Transfer Data for Asynchronous SCI Channel 0: ASCl channel 0 transfer data terminal.
	RXA0	49	Input	Receive Data for Asynchronous SCI Channel 0: ASCl channel 0 receive data terminal.
	CKAO (Commonly used with DREQO)	50	Input/Output	Clock for Asynchronous SCI Channel 0: ASCl channel 0 clock input/output terminal. This terminal is multiplexed with transfer request signal DREQO for internal DMAC channel 0 . When DMA channel 0 is oeprated in the transfer mode of "Between memory and $1 / O^{\prime}$ ", it cannot be used as a clock output terminal.
	$\overline{\text { RTS }}_{0}$	45	Output	Request to Send for Asynchronous SCI Channel 0: One of the ASCl channel 0 modem control signals. The output can be controlled to LOW and HIGH by the program.
	$\overline{\mathrm{CTS}}_{0}$	46	Input	Clear To Send for Asynchronous SCI Channel 0: One of the ASCl channel 0 modem control signals. With this input, transmission can be controlled.
Serial I/O signal (ASCl channel 0)	DCD_{0}	47	Input	Data Carder Detect for Asynchronous SCI Channel 0: One of the ASCl channel 0 modem control signals. With this input, the operation of the receiver section can be reset.
Serial I/O signal 'ASCl channel 1)	TXA1	52	Output	Transfer Data for Asynchronous SCI Channel 1: ASCl channel 1 transfer data terminal.
	RXA1	54	Input	Receive Data for Asynchronous SCl Channel 1: ASCI channel 1 receive data terminal.
	CKA1 (Commonly used with TEND 0 .)	55	Input/Output	Clock for Asynchronous SCI channel 1: ASCl channel 1 clock input/output terminal. This terminal is multiplexed with internal DMAC channel 0 transfer end signal TEND $_{0}$. When CKA1D bit of the ASCl control register A channel 1 is set to " 0°, it can be used as a clock input/output terminal.
	$\overline{\mathrm{CTS}}_{1}$ (Commonly used with RXS.)	57	Input	Clear to SEnd for Asynchronous SCI Channel 1: ASCl channel 1 modem control signal. With this input, transmission can be controlled. This terminal is multiplexed with RXS signal described below. ASCI status register channel 1 CTS1E bit is used to select this terminal.
Serial I/O signal (CSI/O)	TXS	56	output	Transfer Data for Serial I/O Port: CSI/O serial output terminal.
	RXS (Commonly used with CTS1.)	57	Input	Receive Data for Serial I/O Port: CSI/O serial input terminal. This terminal is multiplexed with CTS1, and selection is made by the program.
	CKS	58	Input/Output	Clock for Serial I/O Port: Used as CSI/O clock input/output terminal.
Timer	TOUT (Commonly used with $\overline{\mathrm{A}} \mathbf{7} 8$.)	31	output	Timer Out: Timer output terminal of timer 1. Multiplexed with A18. Selection is made with TOCO and TOC1 bits of the timer control register.

Common terminal descriptions HD64180 (IC4)

Code	Terminal	No.	Selection method
Al 8/TOUT	31		Al8 is selected immediately after resetting. When either one or both of TOC1 bit and TOCO bit is/are set to ' 1 ", TOUT is selected. When the both bits are set to " 0 ", AI 8 is selected again.
CKA0/DREQ ${ }_{0}$	50		CKAO is selected immediately after resetting. Either one of DM1 bit or SM1 bit of DMAC DMA mode register is ' l ', CKAO is compulsorily changed to an input terminal though it is set as an output terminal, and CKAO can be used as $\overline{D R E Q}_{0}$ terminal.
CKA1/TEND	55		CKA1 terminal is selected immediately after resetting. When CKA1 D bit of the ASCl control register A channel 1 is Set to " 1 ", it can be used as TENDO terminal. When the bit is reset to " 0 ", the terminal returns to CKA1.
RXS/CTS ${ }_{1}$	57		RXS terminal is selected immediatelv, after resettina. When CTS1E bit of ASCI status register channel 1 is set to "1", it can be used as CTS 1 terminal. In this case, however, the function of RXS input terminal is not prohibited.

F255011 PJ pin descriptions

Pin	Name	1/0	Description
1	P1697	I	Input port (1/O address 69H)
2	IOSCF	1/O	Input mode: Impuit port (I/O address 6BH) Output mode: I/O address $\mathrm{COH}-\mathrm{FFH}$ selection
3	IOSAB	0	I/O address $\mathrm{AOH} \sim \mathrm{BFH}$ selection
4	10589	0	I/O address 80H - 9FH selection
5	$\overline{1037}$	1/0	Input mode: Input port (I/O address 6BH) Output mode: I/O address 70 H ~ 7FH selection
$\begin{gathered} 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$	PO660 PO661 PO662 PO663 PO664 PO665 PO666 PO667	0	Output port (//O address 66H)
14	PO670	0	Output port (1/O address 67H)
15	GND	-	GND
16	v c c	-	Power (+5V)
$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & \hline \end{aligned}$	PO671 PO672 PO673 PO674 PO675 PO676 PO677	0	Output port (I/O address 67H)
$\begin{aligned} & 24 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	GAIN0 GAIN1 GAIN2 GAIN3	0	Read image signal gain control signal
28	AGC	I	GAIN 3 ~ 0 control signal
29	PTIM	I	Transmission motor start timing sianal
30	RRDY	0	Data send start ready signal to the read process LSI
31	STIM	1	Data send area signal from the read process LSI
32	SCLK	I	Data send clock from the read process LSI
33	SVID	I	Serial image data from the read process LSI
34	PHIT	1	CCD shift pulse sianal
35	$\overline{\text { INT }}$	0	Interruption request signal
36	RESET	1	Reset sianal
37	PHAI	\|	Clock input (8MHz)
38	IORD	I	I/O read
39	İWR	I	I/O write
40	v c c		Power (+5V)
41	GND	-	GND
$\begin{aligned} & \hline 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & \hline \end{aligned}$	D0 D1 D2 D3 D4 D5 D6 D7	I/O	CPU data bus
50	DREQ1	0	DMA ch. 1 reauest sianal to CPU
51	DREQO	0	DMA ch.O request signal to CPU
52	CK614K	1	614.4 KHz clock indut
53	CKA	0	CPU ASIC clock output

Pin	Name	1/0	Description
54	A0		
55	A1		
56	A2		
57	A3	1	CPU address bus
58	A4	1	CPU address bus
59	A5		
60	A6		
61	A7		
62	TPA	0	Transmission motor phase excitement
63	TPB	O	control signal
64	TEST	1	Test pin
65	GND	-	GND
66	VCC	-	Power (+5 V)
67	$\overline{\text { TPA }}$	0	
68	TPB	O	control signal
69	Pl6AO		
70	Pl6A1		
71	PI6A2		
72	Pl6A3	1	Input port (I/O address 6
73	Pl6A4	1	Input port (1/O address 6AH)
74	Pl6A5		
75	Pl6A6		
76	Pl6A7		
77	RSTP	0	Printer reset signal
78	BUSY	1	Busy signal from the printer
79	PCLK	0	Record data send clock to the printer
80	PDATA	0	Serial record data to the printer
81	Cl1	1	Cl signal
82	Cl2	1	RINGDET signal
83	DP	0	Dial pulse generating signal
84	PO657		
85	P0656		
86	PO655	0	Output port (1/O address 65H)
87	PO654	0	Output port (1/O address 65H)
88	PO653		
89	P0652		
90	VCC	-	Power (+5V)
91	GND	-	GND
92	PO651	0	
93	PO650	0	Output port (1/O address 65H)
94	PO690		
95	P0691		
96	P0692		
97	P0693	0	Output port (1/O address 69H)
98	P0694		
99	P0695		
100	PO696		

FO-3700A =~•
8) LZ95G38 (IC12 gate array B) . . . 100 pin QFP

The following functions are provided as the main CPU peripheral functions.

- Memory mapper
- WAIT control
- Main CPU timers (3 units)
- DRAM controller
- Panel I/F (LCD controller I/F, key scan)
- Modem I/F (RTC detection)
- Alarm buzzer/busy tone clock frequency division

LZ95G38 pin description

Pin No.	Signal name	1/0	Description
1	DCLK	1	MODEM DCLK
2	RXD	1	MODEM serial reception data
3	ALARM	\bigcirc	Alarm buzzer clock
4	BSTONE	0	Busy tone signal
5	GND	-	
6	DRWE	\bigcirc	DRAM write enable signal
7	$\overline{\text { CAS }}$	\bigcirc	DRAM CAS signal
8	RAS3	\bigcirc	DRAM RAS signal (3)
9	RAS2	\bigcirc	DRAM RAS signal (2)
10	RAS1	\bigcirc	DRAM RAS signal (1)
11	(NU)		Not used.
12	MA9		
13	MA8		
14	MA7		
15	MA6		
16	MA5	0	DRAM address
17	MA4		
18	MA3		
19	MA2		
20	MA1		
21	MAO		
22	MD7		
23	MD6		
24	MD5		
25	MD4	1/0	DRAM data
26	MD3		
27	MD2		
28	MD1		
29	MDO		
30	GND	-	
31	D7		
32	D6		
33	D5		
34	D4	1/O	Main CPU data bus
35	D3		
36	D2		
37	D1		
38	D0		
39	Vcc	-	
40	GND	二	
41	TEST	1	Test pin

Pin No.	Signal name	$1 / 0$	Description
42	A19	1	Main CPU address
43	A18		
44	A17		
45	A16		
46	A15		
47	A14		
48	A13		
49	A12		
50	A11		
51	A10		
52	A9		
53	A8		
54	A7		
55	A6		
56	A5		
57	A4		
58	A3		
59	A2		
60	A1		
61	AO		
62	$\overline{\mathrm{RD}}$	1	Main CPU read signal
63	$\overline{\mathrm{WR}}$	1	Main CPU write signal
64	IOE	1	Main CPU I/O enable signal
65	$\overline{\mathrm{ME}}$	1	Main CPU memory enable signal
66	$\overline{\text { WAITO }}$	0	Main CPU wait signal
67	$\overline{\text { REF }}$	1	Main CPU refresh cycle signal
68	$\overline{\text { LIR }}$	1	Main CPU LIR signal
69	PHi	1	Main CPU system clock
70	RESET	1	Reset signal
71	$\overline{\text { NTT20 }}$	0	Interruption request signal
72	MWR	0	Memory write signal
73	$\overline{\mathrm{MS}}$	0	Memory select (3)
74	$\overline{\text { MS2 }}$	0	Memory select (2)
75	$\overline{\text { MS1 }}$	0	Memory select (1)
76	MSo	0	Memory select (0)
77	GND	-	-
78	RS	0	LCD controller I/F (Register select signal)
79	RKS	0	LCD controller I/F (Read/write signal)
80	E	0	LCD controiler I/F (enable signal)
81	LD7		
82	LD6		
83	LD5		
84	LD4	$1 / 0$	LCD controller I/F (data bus)
85	LD3		
86	LD2		
87	LD1		
88	LDO		
89	Vcc	-	-
90	GND	-	-
91.	KN3		
92	KN2	0	KEY scan signal (decode data)
93	KN1		KEY scan signal (decode data)
94	KNO		
95	KN11	0	KEY scan signal
96	KN10	1	KEY sense signal
97	SEN3		
98	SEN2		
99	SEN1		KEY sense signal
100	SENO		

(2) Panel control block

The following controls are performed through LZ95G38 according to commands from the main CPU.

- Operation panel key scanning
- Operation panel LCD display

(3) Peripheral UO control block

- Recording control block diagram

Fig. 3
The recording control block is composed as shown above. The descriptions are given below:

- P/S conversion block, DMA control block, recording data control block
The recording data is transferred to the printer unit by these blocks. First, the gate array A sends DREQ to the CPU. The CPU transfers the recording data to the P/S conversion block by means of DMA. The transferred data is converted into serial data and sent through the recording data control block to the printer unit together with a clock.
- Motor control block

This block supplies phase output for control of the TX motors. With register setting, it controls phase switching timing of the motor.

(4) Image signal processing block

The image signal processing block is composed of the following:
(1) CCD sensor drive block (M66333FP (IC2)).
(2) Analog processing block

- OP amp. (TL084 (IC102)),
- Analog switch (4053BP (IC107), 4066 (IC103 and IC104))
- M66333FP (IC2), transistor, etc.
(3) A/D converter block (M66333FP (IC2) inside).
(4) Binary coding processing block
- M66333FP (IC2)
- LH5266 (IC3)

Descriptions on each block are given below:

1) CCD drive block

The Clock necessary for CCD drive is generated in M66333.

$$
\begin{array}{ll}
\text { - } \phi 1 & \text { (Synchronization clock) } \\
\text { - } \phi 2(=\overline{\phi 1)} & \text { (Synchronization clock) } \\
\text { - } \phi \mathrm{R} & \text { (Output buffer reset clock) } \\
\text { - } \phi T & \text { (Transmission clock) }
\end{array}
$$

2) Analog processing block

Video signals supplied from the CCD PWB are sample-hold, gain control and clamped to supply M66333FP.
The gain control is performed by F255011 (IC7), 7406 (IC105), 4066 (IC104), and TL084 (IC102) to control the max. voltage of video signal to about 3V.

3) ADD Converter

A 7-bit, high-speed A/D converter M66333 in (IC2 80 pin QFP) is used to supply A / D converted digital video signals to the binary coding processing block.

4) Binary coding processing block

Digital video signals incorporates various algorithms required for binary coding, and RAM (IC3) which stores data necessary for processing are converted into binary data, and P/S converted, and DMAtransmitted to the line memory of the main CPU.
The algorithms for binary coding in the processing block are as follows:

- Shading correction
- Focus correction
- Auto contrast process
- Intermediate Half-tone expression process (error dispersion process/image area separation)

(5) Modem (R96DFXL) block INTRODUCTION

The Rockwell R96DFXL MONOFAX modem is a synchronous 9600 bits per second (bps) half-duplex modem with error detection and DTMF reception. It has low power consumption and requires only a single +5 VDC power supply. The modem is housed in a single VLSI device package.
The modem can operate over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).
The R96DFXL is designed for use in Group 3 facsimile machines. The modem satisfies the requirements specified in CCITT recommendations V.29. V. 27 ter. V. 21 Channel 2 and T.4, and meets the binary signaling requirements of T .30 .

The modem can operate at $9600,7200,4800,2400$, or 300 bps , and also includes the V. 27 ter short training sequence option.
The modem can also perform HDLC framing according to T .30 at $9600,7200,4800,2400$, or300 bps.
The modem features a programmable DTMF receiver and three programmable tone detectors which operate concurrently with the V. 21 channel 2 receiver.

The voice mode allows the host computer to efficiently transmit and receive audio signals and messages.
The modem is available in either a 100-pin plastic quad flat pack (PQFP) or a 64-pin quad in-line package (QUIP).
General purpose input/output (GPIO) pins are available for host assignment in the 100 -pin PQFP.
The modem's small size, single voltage supply, and low power consumption allow the design of compact system enclosures for use in both office and home environments.
MONOFAX is a registered trademark of Rockwell International.

FEATURES

- Group 3 facsimile transmission/reception
- CCITT V.29, V. 27 ter, T.30, V. 21 Channel 2, T. 4
- HDLC Framing at all speeds
- V. 27 ter short train
- Concurrent DTMF, FSK, and tone reception
- Voice mode transmission/reception
- Halfduplex (2-Wire)
- Programmable maximum transmit level: 0 dBm to -15 dBm
- Programmable transmit analog attentuation:
- 0 dB to 14 dB in 2 dB steps
- Receive dynamic range: 0 dBm to -43 dBm
- Programmable dual tone generation
- Programmable tone detection
- Programmable turn-on and turn-off thresholds
- Programmable interface memory interrupt
- Diagnostic capability
- Allows telephone line quality monitoring
- Equalization
- Automatic adaptive equalizer
- Fixed digital compromise equalizer
- DTE interface: two alternate ports
- Selectable microprocessor bus (6500 or 8085)
- CCITT V. 24 (EIA-232-D compatible) interface
- TTL and CMOS compatible
- Low power consumption: 275 mW (typical)
- Single Package
- 100-pin PQFP
- 64-pin QUIP
- Single +5 VDC power supply
- Software compatible with R96MFX, R96EFX, R96DFX, and R96VFX modems

R96DFXL Hardware Interface Signals

Pin Signals - 100-Pin PQFP

Pin No.	Signal Name	I/O Type
1	GPO3	IANOB
2	GPO4	IANOB
3	GPO5	IANOB
4	GPO6	IANOB
5	GPO7	IA/OB
6	OVD2	GND
7	OVD2	GND
8	D7	IA/OB
9	D6	IA/OB
10	D5	IA/OB
11	D4	IA/OB
12	D3	IA/OB
13	D2	IANOB
14	D1	IANOB
15	D0	IANOB
16	OVD2	GND
17	OVA	GND
18	RAMPIN	R
19	NC	
20	NC	
21	OVA	GND
22	+5VD2	PWR
23	OVD1	GND
24	SWGAINI	R
25	ECLKIN1	R
26	SYNCIN1	R
27	NC	
28	NC	
29	NC	
30	OVA	GND
31	NC	
32	NC	
33	NC	
34	DAIN	R
35	ADOUT	R
36	BYPASS	IC
37	RCVI	R
38	TXLOSS3	IC
39	TXLOSS2	IC
40	TXLOSS1	IC
41	NC	
42	NC	
43	OVA	GND
44	TXOUT	AA
45	RXIN	AB
46	+5VA	PWR
47	OVA	GND
48	AGD	R
49	AOUT	R
50	OVD1	GND
51	NC	
52	$\overline{\text { IRQ }}$	O c
53	$\overline{\text { WRITE-R}} \bar{W}$	IA
54	$\overline{\mathrm{CS}}$	IA
55	READ-ф2	IA
56	RS4	IA
57	RS3	IA
58	RS2	IA
59	RS1	IA

Pin No.	Signal Name	I/O Type
60	RSO	IA
61	GP13	IA/OB
62	NC	
63	GP11	IA/OB
64	RTS	IA
65	EN85	R
66	OVD2	GND
67	PORI	ID
68	XTLI	R
69	XTLO	R
70	XCLK	OD
71	YCLK	OD
72	+5VD1	PWR
73	DCLKI	R
74	SYNCIN2	R
75	GP16	IA/OB
76	GP17	IANOB
77	OVD2	GND
78	CTS	OA
79	TXD	IA
80	OVD2	GND
81	OVD2	GND
82	DCLK	OA
83	EYESYNC	OA
84	EYECLKX	OA
85	EYECLK	OA
86	EYEX	OA
87	ADIN	R
88	DAOUT	R
89	OVD2	GND
90	EYEY	OA
91	GP21	IA/OB
92	OVD2	GND
93	GP20	IA/OB
94	GP19	IA/OB
95	RXD	OA
96	$\overline{\text { RLSD }}$	OA
97	OVD2	GND
98	RCVO	R
99	SWGAINO	R
100	GPO2	IA/OB
Notes: 1. $N C=$ No connection; leave pin disconnected (open). 2. I/O Type: Digital signals: see Table 9; Analog signals: see Table 10. 3. $\mathrm{R}=$ Required modem inter-connection; no connection to host equipment.		

[3] Description of CCD board

The CCD board picks up optical information from the document, converts it into an electrical (analog) signal and transfers it to the control board.

(1) Block diagram

Fig. 4

[4] TELLIU (with Speech PWB unit) board circuit description

1.General

Telephone interface circuitry for this facsimile is all mounted on one circuit board unit and is interfaced with the telephone line and facsimile circuits via connectors.
Connection to the switched telecommunication network is canted out by means as of the magnetic relay. Power required for the control of the unit is supplied from the power supply unit of the facsimile +24 V , $+12 \mathrm{~V},-12 \mathrm{~V},+5 \mathrm{~V}$.

2. Circuit general description

This board is composed of the following blocks.
(1) Surge protection block
(2) Hook detection block(Polarity inversion detection block)
(3) Reception control block --
(4) Transmission control block ${ }^{-}$
(5) Cl signal detection block
(6) Speaker output voice select block
(7) Speaker amplifier block
(8) Polarity guard block
(9) Tone ringer block
(10) Hook control block
(11) Dialer control block
(12) Dial control block
(13) 4-bit control block
(14) External TEL hook detection block

Speech PWB unit (IC3)
(15) Dial pulse transmission block
(16) Communication circuit block

(2) Description of blocks

1. CCD

The TCD1206D is a highly sensitive charged coupled image sensor that consists of 2160 picture elements.
Receiving four drive signals ($\phi T, \phi 2, \phi 1, \phi R$) from the control board, the transferred photoelectric analog signal OS is impedance converted, and the signal VO, is supplied to the control board.
2. Waveforms

1. $\phi 1, \phi 2(=\overline{\phi 1}) \ldots$ signals within the control board.

2. $O S \phi$

Fig. 5

3. Each block description

(1) Surge protection block

This is composed of arrester (AR1). Used to prevent the LIU block from damage caused by a surge voltage occurring across lines, the 3-pole type is used.
(2)Hook detection block(Polarity inversion detection block)
This is composed of IC11 and its peripheral circuits and detects inversion of porarity. When the DC circuit is formed, either $\overline{\mathrm{HS} 1}$ or HS2 turns LOW.
(3) Reception control block

This is composed of IC5, IC6, IC8 and its peripheral circuits and controls reception signals.
(4) Transmission control block

This is composed of IC5 its peripheral circuits and controls transmission signals.
(5) Cl signal detection block

The Cl signal detection block consists of R2, D6, ZD14. PC5 and its peripheral circuits. The Cl (Calling Indicate) signal is detected by the half wave rectifier circuit consisting of D6 and ZD14. The photocoupler PC5 is driven during the half cycle rectified by D6. The photocoupler delives current to IC1 when it is turned on during these half cycles. IC1 inverts the signal present at its input to create Cl signal.
(6) Speaker output voice select block

This is composed of IC7 and its peripheral circuits. The speaker amplifier input signal is selected as shown in the table below.

$\overline{\text { MONITOR }}$	BZCONT	Speaker output voice
0	1	Buzzer, key sound
0	0	Line signal
1	0	Modem send signal

(7) Speaker amplifier block

This is composed of IC9 and its peripheral circuits.
The signal is inputted to amplifier IC through volume and amplified and sent to the speaker. The speaker volume is adjustable by the volume.

(8) Polarity guard block

This is bridge rectifier REC1 and has a function to protect the telephone set against inversion in the line.

(9) Tone ringer block

This is composed of IC10 and its peripheral circuits. When a call signal is inputted, the toner ringer block makes the piezo-electric buzzer ring.
The speake sound volume is varied in by the slide switch.
(10) Hook control block

This is composed of the hook SW, the on-hook relay (OHRLY relay), and its driver.
When OHRLY is high, H relay is on to close the line regardless of the hook SW state.

(11) Dialer control block

This is composed of IC101 and its peripheral circuits, and supplies current to the dialer circuit.

(12) Dial control block

This is composed of IC3 and its peripheral circuits. Signal from the selection signal according to 4-bit signal from the CPU is outputted to the pulse transmission block DP and the telephone line block (PB) according to slide SW1 setting (Tone or Pulse)

(13) Cbit control block

This block is composed of phto couplers (PC1) is used to supply 4 bit data from the CPU through the photo coupler to the dial IC.

(14) External TEL hook detection block

This is composed of IC7 and its peripheral circuits.
When the telephone connected to the external TEL terminal is picked up to form the DC circuit, either EXHS1 or EXHS2 turns LOW.

(In Speech PWB unit)

(15) Dial pulse transmission block

This is composed of IC3 and its peripheral circuits, and has the switching function for pulse dial transmission and the switching function of on-hook/off-hook.
(16) Communication circuit block

This is composed of IC3 and its peripheral circuits. It has functions of reception amplifier, transmission amplifier, AGC circuit, and other function necessary for communication.

Block diagram

Fig. 6

Speech Network IC

TA31065

Pin No.	Pin Name	Pin function
1	V_{L}	[Line current input pin] This pin is connected to the positive output of the diode bridge circuit.
2	TOI	[Send output current flowing pin] This oin is connected throuah the 56 Ohm resistor to the VI oin (1).
3	TOO	[Send output current output pin] This pin is connected through the 15 Ohm resistor to the GND pin (11). Since most of line currents are outputted from this pin, the allowable power of the 15 Ohm resistor which is connected between this pin and the GND pin must be determined by taking the expected max. line current into consideration.
4	NC	硣
5	AC BIAS	[AC signal reference voltage pin] When an AC signal is inputted to this pin through the capacitor (for preventing against DC), the signal is transmitted to the line.
6	MFI	[DTMF or external input signal input pin] A signal inputted this pin is outputted to the V_{L} pin (1) only when the MUTE pin (11) is LOW,
7	TPO	[Send input amp output pin] This pin is negativelv fed back to the TPI1 oin (8).
8	TPI1	[Send input amp reverse input pin] This pin receives negative feedback from the TPO pin (7).
9	TP12	[Send input amp reverse input pin] This pin is DC-biased from the REF pin (15) through the resistor.
10	NC	-
11	MUTE	[NUTE pin] Pin for selection between send signals and MFI input signals in the transmitter system. Pin for selection between send signals and BTI input signals in the receiver system.
12	GND	[Ground pin] This pin is connected to the negative output of the diode bridge.
13	UP	[AC impedance control pin] When this pin is connected directly to the GND pin (12) or through a resistor, the DC potential of the V_{L} pin (1) can be increased to max. 1.5V (TYP) with the same line current.
14	PADC	[Pad control pin] When this pin is connected to the GND pin (12) or the Vcc pin (24) through a resistor, the operating current of gain control (auto pad) by the line current can be controlled.
15	REF	[Internal reference output pin] This pin voltage serves as the reference voltage of the internal pre-amp.
16	NC	- -
17	RPI2	[Reception input amp non-reverse input pin] This pin is directly biased from the REF pin (15) through the resistor.
18	RPI1	[Reception input amp reverse input pin] This oin receives neoative feedback from the PRO oin (19).
19	RPO	[Reception input amp output pin] This pin is negatively fed back to the RPI 1 pin (18).
20	BTI	[Dial confirmation sound (Beep tone, DTMF), monitor sound pinput pin] A signal inputted to this pin is outputted to the RO1 and R02 pin (20) and (23) only when the MUTE pin (11) is LOW.
21	NC	-
22	R02	[Reception output pin, reverse side] This is the output oin to the receiver.
23	RO1	[Reception output pin, non-reverse side] This is the output pin to the receiver.
24	vcc	[Internal power voltage pin] Power for the internal pre-amp.

[5] Description of Power Supply

1. Block diagram

Fig. 1. Block diagram

2. General description

The input voltage is $187 \mathrm{VAC}-276 \mathrm{~V}$ AC conforming to UL standards. The outputs are $\mathbf{+ 2 4 V}(\mathrm{VM}),+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$. The overvoltage protection function for protection of the load in case of power abnormality and the overcurrent protection function for protection of the power supply itself from overload are added,

3. Operational description

When $230-246$ V/AC power is supplied, it is passed through a noise filter to the rectifier section where it is smoothed to about 300V then supplied to the invertor section. The invertor section employs onetransistor ON/OFF self-excited invertor (R.C.C. system) and a stable DC voltage is supplied to the secondary side.
The operation of each section is described below:

3.1. Invertor section

When the voltage across R 4 reaches the gate ON voltage through R5, R6, and R4, Q1 begins to turn ON, flowing a current from pin1 of T1 primary winding to pin3. Then a voltage is generated from pin5 of auxiliary winding to pin4, turning Q1 gate ON completely. The drain current increases linearly to store energy in the primary winding. However, voltage across R3 turns ON Q2 thorough R9 when the drain current reaches a certain level. As a result, Q1 gate voltage falls below the threshold voltage (about 4 V) of the gate and Q1 turns off. Simultaneously when Q1 turns off, the energy stored in the primary winding is induced in the secondary winding to bias the rectifier diodes D4, D5, D6, and D7 forwardly, smoothing each output capacitor. Thus a DC voltage is obtained.
3.2. Control section
(1) +24 V (VM) control

A voltage is generated in the secondary side by repeated operations of 3.1, and the output in the secondary side is divided by R14, VR1, and R15 to be inputted to Q4. The divided voltage is adjusted to about 6.2V by VR1. Q4 always monitors the divided output voltage. When the output voltage exceeds $\mathbf{+ 2 4 V}$, the divided voltage also exceeds 6.2 V and Q 4 judges it as an increase in the output voltage. Then photocoupler PC1 is lit through R13 to turn on the transistor in the light receiving side, supplying a current to the base of Q3, turning off Q1. (The current which is to be passed through the additional line, R8, and C8 to R4 is bypassed by Q3). Resultantly, ON time of Q1 is shortened and the energy stored in the primary winding is decreased, limiting the increase in the output voltage. When the output voltage begins to decrease, the light quantity of PC1 is decreased to lengthen the ON time to Q1. As a result the energy in the primary winding is increased to compensate for the decrease in the output voltage.
The negative feedback control is repeated to stabilize the output voltage.
(2) $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$ control

The outputs of $+5 \mathrm{~V},+12 \mathrm{~V}$, and -12 V are stabilized by the threeterminal regulator ICs (IC3, IC1, and IC2). The overcurrent protection function protects the regulator ICs themselves.

3.3. Overcurrent protection function

When the output current in the secondary side increases to become an overcurrent or short R3/R4 detects the drain current to turn on Q2, The gate voltage of Q1 is controlled to shorten ON time of Q1 to protect the circuit from the overcurrent.

3.4. Overvoltage protection function

When the output voltage is abnormally increased and ZD5 zener voltage exceeds about 30V, ZD5 is shorted to operate the same procedure as the overcurrent protection function. To reset, turn off the AC switch, remove the cause, and replace ZD5 with a new one.

3.5. High temperature protection circuit

Thermal fuse F3 included in the power circuit is blown when the surface temperature of rectifier D1 exceeds about 115 degrees Centigrade. (about 239-F)

3.6 Rush current limiting circuit

When AC power is supplied, a rush current flowing through capacitor C5 may blow fuse F1/F2 and damage the circuit. To prevent this, the power thermistor $\mathbf{T H} 1$ is provided to limit the rush current.

3.7. Line filter

To protect against external noises and noises generated in the power circuit, the line filter is composed of $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3$, and C 4 to reduce noises.
(Waveform)

- At standby

5V/div $5 \mu \mathrm{sidiv}$

- When the overcurrent protection circuit works

Control PWB parts layout (Top side)
Control PWB parts layout (Bottom side)

TEL/LIU PWB parts layout [Top side]

TELLIU PWB parts layout [Bottom side]

[Bottom side]

A

Operation panel PWB parts layout

- 19999999900000 n

CHAPTER 7. OPERATION FLOWCHART

[1] Flow chart

FLOW-VE-11

Auto dial sending

[2] Power on sequence

CHAPTER 8. OTHERS

[1] Service tools

1. List

NO.	PARTS CODE	DESCRIPTION	Q'TY	PRICE
RANK				
1	C PWBS 2683 S C 0 3	Extension board unit		1

2. Description

2-1. Extension board unit

FO-3700 series extension PWB unit connection

1) Remove the bottom ass'y from the body.
2) Connect the cables from the body with the extension PWB unit connectors (CNCCD1, CNSNS1, CNTXM1, CNPNL1, CNPI 1, CNPRT1, CNLED1, CNSP1, CNPH1) similarly with the control PWB and the TELLIU PWB unit. Fix the grounding cable to the bottom PWB with a screw.
(Note) When connecting the cables, check the color of the cables and the color of the connectors.
3) Pass the five cables which are provided for the extension PWB through "TEL LINE' and 'TEL SET' holes in the lower cabinet. Pass the four cables which are in the opposite side to the hook switch through the AC cord hole and the power switch hole, and fix the extension PWB.
4) Connect the extension cables which are in the rear of the body where the extension PWB has been installed with the bottom ass'y (the control PWB, the TEULIU PWB) as follows:

Extention PWB connection diagram

Cable parts code	Pin	Color	Connector	Remark
QCNW-4196SCZZ	22 Pin		CNPNL	Control PWB
QCNW-4197SCZZ	7 Pin		CNCCD	
QCNW-4198SCZZ	6 Pin		CNTXM	
QCNW-4199SCZZ	5 Pin		CNSNS	
QCNW-4200SCZZ	6 Pin	Red	CNPRT	$\begin{gathered} \text { TELLIU } \\ \text { PWB } \end{gathered}$
QCNW-4201SCZZ	8 Pin		CNPI	
QCNW-4202SCZZ	2 Pin	Red	CNLED	
QCNW-4203SCZZ	2 Pin		CNSP	
QCNW-4217SCZZ	8 Pin	Red	CNPH	

Extension board unit

NO.	PARTS CODE	DESCRIPTION	Q'TY	PRICE RANK
1	QCNW-4196SCZZ	CABLE (CNPNL)	1	AU
2	QCNW-4197SCZZ	CABLE (CNCCD)	1	AK
3	QCNW-4198SCZZ	CABLE (CNTXM)	1	AH
4	QCNW-4199SCZZ	CABLE (CNSNS)	1	AH
5	QCNW-4200SCZZ	CABLE (CNPRT)	1	AK
6	QCNW-4201SCZZ	CABLE (CNPI)	1	AL
7	QCNW-4202SCZZ	CABLE (CNLED)	1	AE
8	QCNW-4203SCZZ	CABLE (CNSP)	1	AE
9	QCNW-4217SCZZ	CABLE (CNPH)	1	AK
10	QCNCM7014SC0G	CONNECTOR 7pin (CNCCD1, CNCCD2)	2	AB
11	QCNCM7014SCOE	CONNECTOR 5pin (CNSNS1, CNSNS2)	2	$A B$
12	QCNCM7014SCOF	CONNECTOR 6pin (CNTXM1, CNTXM2)	2	AB
13	QCNCM2389SC2B	CONNECTOR 22pin (CNPNL1, CNPNL2)	2	AE
14	QCNCM 7014 SCOH	CONNECTOR 8pin (CNPI1, CNPI2)	2	AB
15	QCNCM 705 FAFO 2	CONNECTOR 6pin (CNPRT1, CNPRT2)	2	AB
16	QCNCM7014SCOB	CONNECTOR 2pin (CNLED1, CNLED2)	2	AD
17	QCNCM2401SCOH	CONNECTOR 8 pin (CNPH1, CNPH2)	2	AC
18	QCNCM2401SCOB	CONNECTOR 2pin (CNSP1, CNSP2)	2	AA
19	LPLTM2684SCZZ	Bottom plate	1	AR
20	XHBSD30P05000	Screw, $3 \times 5 \mathrm{~mm}$	3	AA
21	QPWBS 2683 SCZZ	EXTENSION BOARD (WITHOUT PARTS)	1	BV

List of jigs used for disassembly and assembly of the ink jet printer

NO.	PARTS CODE		DESCRIPTION	PRICE
1	OJZC214460003	Pen garage	RANK	
2	UKOGD2031SCZZ	Torx screwdriver (M2.5 x 5)	1	BK
3	UKOGD2032SCZZ	Torx screwdriver (M3 $\times 8)$	BQ	
4	UKOGM2026SCZZ	Optical adjustment plate	1	BQ

2-2. Scan optical system adjustment

(1) Outline

The adjustment procedures of the scan optical system are described below:

(2) Adjustment procedures

(1) Fully open the upper cabinet, remove fixing screws of the recording paper tray, and remove the recording paper tray. In order to perform focus adjustment, remove the optical system unit from the frame.
(2) Install the scan adjustment jig to the optical system unit so that the pattern surface is in the lower side.
(3) Fit the pin of the optical system adjustment jig with the hole in the optical system frame.

(4) Use an oscilloscope to connect the control PWB VID (1 channel side), $\boldsymbol{\phi} \mathbf{T}$ (2 channel side), and AG (GND).

VID VID

©T CNCCD-4
AG CNCCD-3
(5) Supply power to the main body to light the LED in the LED array lighting mode Loosen the two red screws of the CCD to obtain VID signal waveform in synchronization with $\phi \mathbf{T}$ signal and adjust the CCD position so that the following waveform is obtained.

[CCD waveform model]
(6) By adjusting the CCD PWB as shown above, focus is adjusted and scan line is aligned.
After completion of the CCD adjustment, tighten the two red screws and apply screw lock.

[2] IC signal name

VHIMC14066BF

Pin Arrangement

VHIPST600CMT1

Equivalent circuit (One of the four blocks)

VHIMC34012-1P

APPLICATION CIRCUIT PERFORMANCE

Characteristic	Typical Value	Units
Output Tone Frequencies MC3401 2-I Warble Frequency	$\begin{aligned} & 832 / 1040 \\ & 13 \end{aligned}$	HZ
Output Voltage ($\mathrm{V} 1>60 \mathrm{~V} / \mathrm{ms}, 20 \mathrm{~Hz}$)	20	VP-P
Output Duty Cycle	50	\%
Ringing Start Input Voltage ($\mathbf{2 0 H z)}$	36	V ns
Ringing Stop Input Voltage (20 Hz)	28	Vrms
Maximum AC Input Voltage ($<68 \mathrm{~Hz}$)	150	Vms
$\begin{aligned} & \text { Impedance When Ringing } \\ & \mathrm{VI}=40 \mathrm{Vrms}, 15 \mathrm{~Hz} \\ & \mathrm{VI}=130 \mathrm{Vrms}, 23 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	K
Impedance When Not Ringing $\begin{aligned} & \mathrm{VI}=10 \mathrm{Vrms}, 24 \mathrm{~Hz} \\ & \mathrm{~V}=2.5 \mathrm{Vrms}, 24 \mathrm{~Hz} \\ & \mathrm{VI}=10 \mathrm{Vrms}, 5.0 \mathrm{~Hz} \\ & \mathrm{VI}=3.0 \mathrm{~V} \mathrm{~ms}, 200 \sim 3200 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 28 \\ >1.0 \\ 55 \\ >1.0 \end{gathered}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{M} \Omega \\ & \mathrm{~K} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Maximum Transient Input Voltage ($\mathrm{T}<2.0 \mathrm{~ms}$)	1500	V

VHIULN2003AN/

VHIMC34012-1P

VHI64180ZSR08

VHILB1730//-1

VHIMC74HC32F-

VHILM393PS/-S

VHINJM4558MF-

VHILH5268T410

Pin name	Signal
A0 $\sim \mathrm{A} 12$	Address input
$\overline{\mathrm{CE} 1 / \mathrm{CE} 2}$	Chip enable
$\overline{\mathrm{WE}}$	Write enable
$\overline{\mathrm{OE}}$	Output enable
I/O1 -I/O8	Data I/O
VCC	Power source
GND	Ground
N.C.	Non connection

VHINJU6355E-1

10	Function	Description			
1	10	DATA pin VO select pin " H " : Data input "L': Tata output When,however, CE pin is in "L',DATA pin is in high impedance			
$\stackrel{2}{3}$	$\begin{aligned} & \hline X T \\ & X T \\ & \hline \end{aligned}$	Cystal oscillator connection pin ($(=32.768 \mathrm{KHz}$) For the capacity of Cg and Cd . refer to the series composition table			
5	CE	Chip enable input pin (built-in puil-down resistor) " $\mathrm{H}^{\text {" }}$: DATA pin allows data input/output "L": DATA pin is in high impedance			
6	CLK	Clock input pin: Data are inputted or output in synchronization with this clock When, however, CE pin in "L", DATA pin is in high impedance			
	DATA	Serial timer data VO pin	10	GE	DATA pin
7			H L H L	H H L L	Input Output High impedance High impedance
8 4	$\begin{aligned} & \text { VDD } \\ & \text { VSS } \end{aligned}$	Power pin +5 V Power pin GND			

VHIHM514800J8

vech	${ }^{28} \square$ vss
$100 \mathrm{H}^{2}$	27.107
$1201{ }^{1}$	26 ШV06
$102 \mathrm{E}_{4}$	${ }_{25}$ V Vos $^{\text {a }}$
103 - 5	24.104
nc- ${ }^{\text {a }}$	${ }_{23} \square \mathrm{CAS}$
$\overline{W E}$ [?	${ }^{22}$ 日 $\overline{\text { OE }}$
$\overline{\mathrm{ASA}} \mathrm{D}^{\text {a }}$	$21 . \mathrm{nc}$
${ }^{\text {a }}$ - ${ }^{\text {a }}$	${ }_{20}$ A8 $^{\text {A }}$
${ }^{4}-{ }^{10}$	19 A7
${ }^{1} 111$	${ }_{18}$ ® $^{\text {a6 }}$
${ }^{\text {A } 2-12 ~}$	17 ${ }^{\text {as }}$
${ }^{43} \square^{13}$	16 A4
vcc-14	${ }_{15}$-vss

Pin descrption			
Pin	Pin name	Pin	Pin name
AO-A9	Address input (Low/Refresh AO-A3 Column A0-A3)	$\overline{\text { CAS }}$	Column address strobe
		WE	Read/Write input
1/00-1/07	Data 1/O	$\overline{O E}$	Output enable
RAS	Low address strobe	VCC	Power (+5 V)
		VSS	Connection

VHIM66333FP-1

model FO-3700

CONTENTS

1 Scanner mechanism

2 Upper cabinet, document guide upper
(3) Print mechanism
(4) Optical unit

5 Packing material \& Accessories
(6) Control-PWB unit

7 Power supply PWB unit

8 TEL-Liu PWB unit
(9) Panel PWB unit

10 Sensor PWB unit

11 CCD PWB unit

50 Hardware parts

- Index

Because parts marked with " \triangleq " is indispensable for the machine safety maintenance and operation, it must be replaced with the parts specific to the product specification.
(1) Scanner mechanism

1 Scanner mechanism

[2] Upper cabinet, document guide upper

FAPS0077

No.	PARTS CODE	${ }_{\text {Pa }}^{\text {PRICE }}$ RANK	(${ }_{\text {MARK }}$	PART	DESCRIPTION
- 2	PGiDM23975CLB	AE		C	Hopper guide L
A	PGiDM23975CRB	AE		c	Hopper suide R
A	GCABA22325C2D	AX	N	D	Upper cabinet
	MSPRC26605CZZ	AB		c	Hopper spring
	NGERP2206 ${ }^{\text {a }}$ (${ }^{\text {a }}$	AE		C	Pinion gear
7	JKNBP20635CzB	AD		c	Release knob
8	JBTN-21165CZB	A ${ }^{\text {c }}$		c	Function key
		A A		c	
10	JBTN-21175CZB	${ }_{\text {AC }} \mathrm{A}$		c	A/M changing key
${ }_{11}^{12}$		${ }_{\text {A }} \mathrm{A}$		c	Direct key
13	OCEKP335ASC01	${ }_{\text {B }}$		E	$\frac{\text { Start } \text { stop } \mathrm{key}}{\text { Panel } \mathrm{PWB} \text { unit }}$
- 14	QCNW-4170SC22	AT		c	Panel cable
	LPLTM 2685 SCZZ	AD		c	Separater
	MSPRT2661sczz	AB		c	Separate spring
17	MSPRP2652SCZZ	AD		c	Paper feed spring
18	LPLTG26785CzZ	AD		c	Separate rubber
19	MSPRT26765C2A	AB		c	Spring (Open and shut)
- 20	$\frac{L P L T P 2676 S C Z Z ~}{\text { PCOVP2097SCZB }}$	$\frac{\mathrm{AE}}{\mathrm{AH}}$		c	Stopper plate
- 21	$\frac{\mathrm{PCOVP20975CZ}}{\text { NGERH2 } 258 \mathrm{SCZ}}$	$\frac{A H}{A B}$		c	Document inserting cover
23	NBRGP2141×HZZ	AH		c	Transfer bearing 2
24	PSHEZ29355CZZ	AB		c	Rear sheet
	MSPRT2657SCZZ	A B		c	Release lever return spring
26	MLEVP21666SCZZ	AM		c	Release lever
$\stackrel{27}{28}$	NROLR22844SC2Z	AK		C	Transier roller 1
$\stackrel{28}{29}$	$\frac{\text { NROLP } 2249 \times \mathrm{HZZ}}{\text { MSPRP } 535 \mathrm{HzZ}}$	$\frac{A E}{A D}$		c	Pinch roller 2
30	QCNW-4175sczz	$\frac{A E}{}$		C	Parth cable
	PBRS-20415CzZ	AG		c	Brush, lecectro-static discharger
\$ 32	PGiDM23965CZB	BA		c	Document guide upper
	MSPRC26815CZZ	${ }^{\text {A }}$ C		c	Spring 2 (0pen and shut)
35 36	$\frac{M S P R D 26555 C z Z ~}{\text { MSPR } 6565 C 72}$	${ }^{\text {A }}$ C		c	Spring (Open and shut) (L)
$\stackrel{36}{101}$	MSPRD266SC2Z	${ }_{\text {A }} \mathrm{A}$ C		C	Spring (Open and shut) (R)
			N	E	Upper cabinet ass'y
	-				
	-				

FO-3700 (3)

Print mechanism

[5] Packing material \& Accessories

[5] Packing material \& Accessories

6. Control PWB unit

（6）Control PWB unit

NO．	PARTS CODE	PRICE RANK	NE W MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION	
12	$1 \mathrm{VHiLM393PS} /-\mathrm{S}$	A C		B	IC（LM393PS）	
12	2 QSöCZ2051SC32	A C		C	IC socket（32pin）	［1C113］
1	$3 \mathrm{VHI} 27020 \mathrm{FCB0}$	B B M	N	B	IC（27020FCBOB）	［IC114］
124	VRS－TP2BD000J	A A		C	Resistor（ $1 / 8 \mathrm{~W}$ On $\pm 5 \%$ ）	［L101］
125	VRS－TP2日D000J	A A		C	Resistor（ $1 / 8 \mathrm{~W}$ On $\pm 5 \%$ ）	［102］
126	VRS－TP2BD000J	A A		C	Resistor（ $1 / 8 \mathrm{~W}$ On $\pm 5 \%$ ）	L103］
127	$V R S-T P 2 B 0000 \mathrm{~J}$	A A		C	Resistor（ $1 / 8 \mathrm{~W}$ on $\pm 5 \%$ ）	L104］
128	VRS－TP2BD000J	A A		C	Resistor（ $1 / 8 \mathrm{~W}$ on $\pm 5 \%$ ）	L105］
129	VS2SC2412KS－1	A B		B	Transistor（2SC2412KS）	Q101］
131	VS2SC2412KS－1	A B		B	Transistor（2SC2412KS）	Q102］
132	VSDTC114EK／－1	A A		B	Transistor（DTC114EK）	Q103］
133	VSDTA114EK／－1	AB		B	Transistor（DTC114EK）	Q104］
134	VRS－TS2AD102J	A A		B	Transistor（DTA114EK）	Q105］
135	VRS－TS2AD330J	A A		C	Resistar（ $1 / 10 \mathrm{~W} 1.0 \mathrm{~K} \Omega \pm 5 \%$ ）	［R1］
136	VRS－TS2AD102J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 33 \mathrm{n} \pm 5 \%$ ）	［R2］
137	VRS－TS2AD102J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 1.0 \mathrm{~K} \Omega+5 \%$ ）	R3］
138	VRS－CY1JD221J	A A		C	Resistor（1／10W $1.0 \mathrm{~K} \Omega \pm 5 \%$ ）	R4］
139	VRS－CY1JD222J	A A		C	esistor（ $1 / 16 \mathrm{~W} 220 \Omega \pm 5 \%$ ）	R6］
140	VRS－CY1JD222J	A A		C	esistor（ $1 / 16 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	［R7］
141	VRS－CY1JD163J	A A		C	sistor（ $1 / 16 \mathrm{~W}-2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R8］
					istor（1／16W $16 \mathrm{~K} \Omega \pm 5 \%$ ）	［R9］
143	VRS－CY1JD103J	A A		C	stor（ $1 / 16 \mathrm{~W} 2.2 \mathrm{KQ} \pm 5 \%$ ）	R10］
144	VRS－CY1JD470J	A A		C	or（ $1 / 1 / 16 \mathrm{~W} / 0 \mathrm{~K} \Omega \pm 5 \%$ ）	R11］
145	VRS－CY1JD224J	A A		C	Resistor（ $1 / 16 \mathrm{~W} 47 \Omega \pm 5 \%$ ）	R12］
146	VRD－HT2HY331J	A A		C	Resistor（1／4W $330 \Omega \pm 5 \%$ ）	R13］
147	VRD－HT2HY331J	A A		C	Resistor（ $1 / 4 \mathrm{~W} 3300 \pm 5 \%$ ）	R15］
148	$V R_{\text {c }}=$ TS2AD271J	A A		C	Resistor（1／10W $270 \Omega \pm 5 \%$ ）	R16］
149	$V R S-T S 2 A D 271 J$	A A		C	Resistor（1／10W $270 \Omega \pm 5 \%$ ）	R17］
150	VRS－TS 2 AD2 71 J	A A		C	Resistor（1／10W $270 \Omega \pm 5 \%$ ）	R18］
151	VRS－TS2AD271J	A A		C	Pracieter（1／10W $2700 \pm 5 \%$ ）	R19］
152	VRS－TS2AD271	A A		c	Resistor（1／10W $2700 \pm 5 \%$ ）	R20］
	3 VRS－TS2AD271	A A		C	Resistor（1／10W $270 \Omega \pm 5 \%$ ）	R21］
154	VRS－TS 2 AD 2711	$A A$		C	resisitor（1／10W 270n $\pm 5 \%$ ）	［R22］
155	VRS－TS2AD100J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 10 \mathrm{n} \pm 5 \%$ ）	R101］
156	VRS－TS2AD330J	AA		C	Resistor（ $1 / 10 \mathrm{~W} 33 \Omega \pm 5 \%$ ）	R102］
157	$V R S-T S 2 A D 1821$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 1.8 \mathrm{~K} \Omega \pm 5 \%$ ）	R103］
158	$V R S-T S 2 A D 000 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W}$ On $\pm 5 \%$ ）	R104］
159	$V R S-T S 2 A D 103 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$ ）	R106］
160	$V R S-T S 2 A D 000 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W}$ On $\pm 5 \%$ ）	R107］
161	VRS－TS2AD000J	A A		C	Resistor（ $1 / 10 \mathrm{~W}$ On $\pm 5 \%$ ）	R108］
162	$V R S-T S 2 A D 472 \mathrm{~J}$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R110］
163	VRS－TS2AD103J	A A		C	Resistor（ $1 / 10 \mathrm{~W}$ 10K $\Omega \pm 5 \%$ ）	R111］
164	VRS＝TS2En10？	$A A$		C	Resistor（ $1 / 10 \mathrm{~W} 1.0 \mathrm{~K} \Omega \pm 5 \%$ ）	R112］
65	VRS－TS2AD562 J	A A		\bar{C}	Resistor［1／10W $5.6 \mathrm{~K} \Omega \pm 5 \%)$	R113］
166	VRS－TS2AD330」	A A		C	Resistor（1／10W 330 $\pm 5 \%$ ）	R114］
16	7 VRS－TS2AD472 J	A A		C	Resistor（1／10W $4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R115］
168	VRS－TS2AD472J	AA		C	／Resistor（1／10W $4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R116］
169	$V R S-T S 2 A D 472 \mathrm{~J}$	A A		${ }^{0}$	＇Resistor（ $1 / 10 \mathrm{~W} 4.7 \mathrm{KQ} \pm 5 \%$ ）	R117］
170	$V R S-T S 2 A D 103 \mathrm{~J}$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 10 \mathrm{KQ} \pm 5 \%$ ）	R119］
171	VRS－TS2AD101J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 100 \mathrm{n} \pm 5 \%$ ）	R120］
172	$V R S-T S 2 A D 472 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R121］
173	$V R S-T S 2 A D 000 \mathrm{~J}$	A A		C	Resistar（ $1 / 10 \mathrm{~W} 0 \mathrm{O} \pm 5 \%$ ）	R122］
174	$V R S-T S 2 A D 822 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 8.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R123］
175	VRS－TS2AD3921	A A		C	Resistor（ $1 / 10 \mathrm{~W} 3.9 \mathrm{~K} \Omega \pm 5 \%$ ）	R124］
176	VRS－TS2AD202J	A A		C	Resistor（1／10W $2 \mathrm{~K} \Omega \pm 5 \%$ ）	R125］
177	VRS－TS2AD2225	A A		C	Resistor（ $1 / 10 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R126］
178	VRS－TS2AD222J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R127］
179	VRS－TS2AD102 J	A A		C	Resistar（ $1 / 10 \mathrm{~W} 1.0 \mathrm{Ka} \pm 5 \%$ ）	R128］
180	VRS－TS2AD222J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R129］
181	VRS－TS2AD472J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R130］
182	VRS－TS2AD561J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 560 \Omega \pm 5 \%$ ）	R131］
183	VRS－TS2AD472」	A A		C	Resistor（ $1 / 10 \mathrm{~W} 4.7 \mathrm{~K} \Omega \pm 5 \%$ ）	R132］
184	VRS－TS2AD222J	MH		C	Resistor（ $1 / 10 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	［R133］
185	VRS－TS2AD202J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 2 \mathrm{~K} \Omega \pm 5 \%$ ）	［R134］
186	VRS－TS2AD101J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 100 \Omega \pm 5 \%$ ）	［R135］
187	VRS－TS2AD221J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 220 \Omega \pm 5 \%$ ）	R137］
188	VRS－TS2AD391J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 390 \Omega \pm 5 \%$ ）	R138］
189	$V R S-T S 2 A D 102 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 1.0 \mathrm{~K} \Omega \pm 5 \%$ ）	R139］
190	VRS－TS 2AD822J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 8.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R140］
191	VRS－TS2AD222J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$ ）	R141］
192	$V R S-T S 2 A D 471 \mathrm{~J}$	A A		C	Resistor（ $1 / 10 \mathrm{~W} 470 \mathrm{n} \pm 5 \%$ ）	R142］
193	VRS－TS2AD103J	A A		C	Resistor（ $1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$ ）	R143］
194	VRS－TS2AD201J	AG	N	C	Resistor（ $1 / 10 \mathrm{~W} 200 \mathrm{n} \pm 5 \%$ ）	［R144］
195	$V R S-T S 2 A D 000 J$	A A		C	Resistor（ $1 / 10 \mathrm{~W}$ 0 $= \pm 5 \%$ ）	［R146］
196		A A		r	Resistor（1／10W $10 \mathrm{~K} \Omega \pm 5 \%$ ）	R148］
197	VRS－TS2AD000J	$\bar{A} \bar{A}$		C	Resistor（1／10W $0 \Omega \pm 5 \%$ ）	［R149］
	VRS－TS2AD103JA	A		C	Resistor（1／10W $10 \mathrm{~K} \Omega \pm 5 \%$ ）	［R150］
99 V	S－TS2AD103JA	A		C	Resistor（1／1u\％10K	［0irent
	VRS－TS2AD103J｜A	A		C	Resistor＿（1／10W 10K0 $\pm 5 \%$ ）	［R152］

6 Control PWB unit

\square ControIPWBunit

7] Power supply PWB unit

	NO.	PARTS CODE	PRICE RANK	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION	
4		OCB829820363 B	C		B	Transformer (PT-P79-KTT)	[T1]
\triangle	2	OCBUKL05822271	A H		C	Filter (FU 105VOR4A203)	[L1,2]
	3	0CBPZZ06042Z/1	A C		C	Jumping wire (IPS: -3002-4)	[FB1]
	4	0CBEFZ891547/1	A C		C	Ferrite core (BLO1 ${ }^{\text {RN1-A62B1) }}$	[FB2]
	5	OCBUCCOO13DZ	A M		B	C (UPC78N12H)	[IC1]
	6	OCBUCCOO10FZ	A C	1	B	C (NJM79L12A)	[IC2]
	7	OCBUCBO112AZ/	AK		B	IC (NJM7805FA)	[IC3]
A	8	OCBUAG0091AZ	A Q		B	FET (2SK1601)	[Q1]
	9	OCBUACOO56BZ/A	D		B	Transistor (2SC2002-L)	[Q2]
	10	OCBUACOO98AZ/A	G		B	Transistor (2SC3518)	[Q3]
	11	OCBUAC0ROAC71.	$\triangle \Gamma$				Q4]
4	1	$20 C B U B B 017802 /$ AG			B Mindoe (D2SBA60)		[1]
	1						D2]
	14	VHDIN414.80,			B	Diode (1SS55)	[D3]
	15	$0 \mathrm{CBUBCO221AZ}$ /	AC		B	Diode (ERA18-02)	[D4,5]
	16	¢ C B U B On 2 R nRZ-, 1 ar,			B	Diode (11EQ04)	[D6]
	1				B	Diode (D10LC20U)	[07]
					B \|Zener diode (RD27ESAB3)		[2D1]
	19						[2D2]
	20	OCBUBDAE $150 \mathrm{~B} /$	A D		B IZener diode (RD15FB1)		[203]
	21	OCBUBDAA6R2C,	AC		B	Zener diode (RD6.2EB2)	[2D4]
	22	OCBUBDAE300D/	AD		B	Zener diode (RD30FB3)	[2D5]
4	23	OCBUDC0139AZ/	AN		B	Photo coupler (PC113Y11)	[PC1]
	24	OCBUEFC564BA	$A C$		C	Metal film resistor (SFR25H560K(52))	[R1]
	25	OCBUEEC474BG/	AB		C	Carbon resistor (RDF 1/2PS474J)	R2]
	26	UCBUEFER33CH/	AC		C	Metal film resistor (SPRX2R33J)	R3]
	27	OCBUEEB223BA/	AC		C	Resistor (R1/4PS223J)	[R4]
	28	OCBUEEB564BA/	A A		C	Carbon resistor (R1/4PS564J)	[R5,6]
	29	0 CBUEFE $104 \mathrm{CS} /$	AB		C	Metal film resistor (RSS2U104J)	[R7, 17]
	30	OCBUEFE391CL/'	AC		C	Metal film resistor (RSS2-L15-391J)	[R8]
	31	0 CBUEEB471BA\%	A C		C	Carbon resistor (R1/4PS471J)	R9]
	32	OCBUEEB330BM/	A A		C	Carbon resistor (F20R-02J330)	R10]
	33	OCBUEFD561AU/	$A C$		C	Metal film resistor (RS1F561J)	R11]
	34	0CBUEEB222日A/	AC		C	Carbon resistor (1/4W $2.2 \mathrm{~K} \Omega \pm 5 \%$)(R1/4PS222J)	R12]
	35	OCBUEEB2718A	A A		C	Resistor (R1/4PS271J)	R13]
	36	0 CBUEEB $822 \mathrm{BA} /$	AA		C	Resistor (R1/4PS822J)	R14]
	37	OCBUEEB272BA/	A A		C	Carbon resistor (R1/4PS272J)	R15]
	38	OCBUFBA102DC/	$A D$		B	Variable resistor (KVSF637AB102)	VR1]
4	39	0 CBUGFZ224FY/	AG		C	Film capacitor (ECQ-U2A224MVA)	[C1,2]
$\stackrel{4}{4}$	40	0CBUGCZ222CK/1A F					[C3,4]
A	41	OCBUGBQ820日R 2	$A P$		C	Block capacitor (LGQ2G820MHSZ)	[C5]
	42	0 CBUGCU103BC/	A D		C	Ceramic capacitor (DE1307-1E103Z1K)	[6]
	43	UCBUGCU2218R/	AC		C	Ceramic_capacitor (DE0705R221K1K-MHR)	[C7]
	44	OCBUGFF103ER/	A C		C	Capacitor (AMZF-103K50)	[C8,10]
	45	OCBUGFF683ER/	AD		C	Capacitor (AMZF-683K50)	[C9]
\triangle	46	OCBUGFF102ER/	AC		C	Capacitor (AMZF-102K50)	[11]
	47	0 CBUGCQ222AQ $/$	A E		C	Ceramic capacitor (DE7 100-1F222MVA1-KC)	C12,13]
	48	0 CBUGAD390PR/\|A E			C Capacitor (LXF25VB39(M)FM-5)		C14,15]
	49	OCBUGAD100HD/	AC		C	Capacitor (UVZ1E100MDH1AA)	C16,17]
	50	OCBUGAC122GK/	AG		C	Capacitor (UPL1C122MRH1AA)	[C18]
	51	$0 \mathrm{CBUGAC} 221 \mathrm{HD} /$	A C		C	Capacitor (UVZ1C221MEH1AA)	[C19]
	52	$0 \mathrm{CBUGCS} 222 \mathrm{AP} /$	AC		C	Ceramic capacitor (DD08-63E222P500)	[C20]
	53	0 CBUGAE122NS/	A H		C	Capacitor (LXF35VB1200(M)MC-12.5)	[C21]
	54	OCBUGAE221HD/	AD		C	Capacitor (UVZ1V221MPH1AA)	[23]
	55.	OCBUGCF104DS $/$	AC		C	Ceramic capacitor (DD308-63F104Z50)	[24]
\triangle	56	$0 \mathrm{CBUERALE471/}$	AF		B	Varistor (ENC471D-07A)	[V1]

PowersupplyPWBunit

8 TEL-Liu PWB unit

8 TEL-Liu PWB unit

	n!	PARTS CODE	PRICE RANK	$\begin{aligned} & \text { INEW } \\ & \text { MARK } \end{aligned}$	PART RANK	DESCRIPTION	
	245	VCKYTV1HB? 73 K	A A		C	Capacitor (50WV $0.027 \mu \mathrm{~F}$)	[C130]
	246	VCKYTV1HB392K	AA		c	Capacitor (50WV 3900PF)	cc1311
	247	$V C K Y T V 1 H F 223 \mathrm{Z}$	A		C	Capacitor (50 WV 0.022 F)	CC1321
	248	VCKYIVIHF223Z7A	A		C	Capacitor (50 WV 0.022 F)	cc1331
	249	VCKYTV1HF223ZA	A		C	Capacitor (50 WV $0.022 \mu \mathrm{~F}$)	[C134]
	250	VCKYTV1HF223ZA	A		C	Capacitor ($50 \mathrm{WV}{ }^{-} 0.022 \mu \mathrm{~F}$)	C135]
	251	VCKYTV1HB821KA	A		C	Capacitor (50WV 820PF)	[C136]
	252	VCKYTVIHB472K	A A		c	Capacitor (50WV 4700PF)	C137]
	253	QJAKZ2 029 SCO	AD		\bar{C}	Connector. (4 pin)	[CNHJ]
	254	QCNCM7014SC0BA	D		B	Connector (2pin)	[CNLED]
	255	QCNCW2 $436 \mathrm{SC5J}$	AB		C	Connector (50 pin)	[CNLIU]
	256	QCNCM7014 S COH	AB		C	Connector (8pin)	[CNPI]
	257	QCNCM $705 \mathrm{FAFO2A}$	B		C	Connector ($\mathrm{B} 6 \mathrm{~B}-\mathrm{PH}-\mathrm{K}-\mathrm{R}$)	[CNPRT]
	258	QCNCM886JAFZZ	AD		C	Connector (9pin)	[CNPW]
	259	QCNCM2401SC0BA	A		B	Connector (2pin)	[CNSP]
	260	QJAKZ2043SCFD	AC		C	Jack	CNLJ/TLJ]
	261	VHDDSS133//-1	A A		8	Diode (DSS133)	[02]
	262	V HDDSS $133 / /-1$	A A		8	Diode (DSS 133)	[03]
	263	$V H D D S S 133 / 7 / 1$	A A		B	Diode (DSS133)	D4
	264	$V H D 15 S 82 / / /-1$	A B		B	Diode (1SS82)	D5
	265	VHDDSS131//-1	AA		B	Diode_(DSS131)	[06]
	266	VHDDSS133//-1	A A		B	Diode (DSS133)	[7]
	267	VHDDSS $133 / / /-1$	A A		8	Diode (DSS133)	[08]
	268	VHIULN2003AN/	$A E$		8	IC (ULN2003AN)	[1C1]
	269	VHIULN2003AN/	$A E$		8	IC (ULN2003AN)	IC4]
	270	VHINJM4558D-1	AN		B	IC (${ }^{\text {JJM4558D) }}$	IC5]
	271	$V \mathrm{VINTM4558D-1}$	$A \cdot M$		8	IIC (NJM45580)	
	272	VHiNJU4053D-1	$\overline{A F}$		\bar{B}	IC (NJU40530)	[1C7]
	273	VHiMC34119/-1A	F		B	IC (MC34, ${ }^{\text {I }}$)	[C9]
	274	$V \mathrm{H}, \mathrm{MC} 34012-1 \mathrm{P}$	AF		B	1 C (MC34012)	[1C10]
	275	VHiTHS56////-iA	N		B	IC (THS56)	[1C11]
	277		AN		B	IC (THS56)	[1C12]
	277	VHiS $7235 \mathrm{~F} 2 \mathrm{~F}-1$	AM		B	IC ((7235 F 2 F)	[IC101]
	$\frac{278}{279}$	VRS-TS2ADOOOJ	A A		C	Resistor ($1 / 10 \mathrm{~W} 00 \pm 5 \%$)	[JP103]
	279	VRS-TS2AD000J	AA		C	Resistor ($1 / 10 \mathrm{~W}$ 0n $\pm 5 \%$)	[JP107]
	280	VRS-TS2AOOOOJ	A A		c	Resistor ($1 / 10 \mathrm{~W}$ on $\pm 5 \%$)	[JP109]
	281	VRS-TS 2AD000JA	A		C	Resistor ($1 / 10 \mathrm{~W} 0 \mathrm{n}+5 \%$)	[JP110]
	282	VRS-TS 2 AOOOOJ	A A		C	Resistor ($/ 1 / \mathrm{OW}$ On $\pm 5 \%$)	JP111]
	283	VRS-TS2ADOn夌A	\ldots		C	Resistor ($1 / 10 \mathrm{~W}$ On $\pm 5 \%$)	JP112]
	284	VRS-TS2ADO00J	A A		C	Resistor ($1 / 10 \mathrm{~W} 0 \Omega \pm 5 \%$)	[JP113]
	285	VRS-TS2AD000J	AA		C	Resistor ($1 / 10 \mathrm{~W} 0 \Omega \pm 5 \%$)	JP114]
	286	VIRS-TS2AD000J	AA		C	Resistor ($1 / 10 \mathrm{~W} 0 \Omega \pm 5 \%$)	[JP115]
	28 ?	virs-ts 2 adou0j	$A A$		c	Resistor ($1 / 10 \mathrm{~W} 00 \pm 5 \%$)	
		RS-TS2AD000J	AA		c	Resistor ($1 / 10 \mathrm{~W} 00 \pm 5 \%$)	3P121
	289	VRS-TS2AD000J	AA		C	Resistor ($1 / 10 \mathrm{~W} 00+5 \%$)	[JP122]
	290	RFiLN2011SCZZ	$A C$		C	Coil (SBT-0260)	[L1]
	291	VRO-RC-ZEYOOOJ	A A		c	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[L2
A	29	2 RFiLN 2011 SCZZ	A C		c	Coil (SBT-0260)	[L3]
	293	3 VRO-RC2EYOOOJ	A A		c	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[L4]
	294	RD-RC2EY000JfA	A		C	IResistor ($1 / 4 \mathrm{~W}$ 0n $\pm 5 \%$)	
	295	\checkmark VD-RC2EY000.1A			r	Rosistor ($1, / 4.400 \pm 5 \%$)	
	29	6 VRO-RC2EYOOOJ	A A		C \| R	esistor ($1 / 4 \mathrm{~W}$ On $+5 \%$)	[L11]
	297	VRD-RC2EY000JA	A		c	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[L12]
	2	$8 \mathrm{RD}=\mathrm{RC.2EY000JA}$	A		c	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	L13]
	9	VRD-R2EY00才JA	A		c	Resistor ($1 / 4 \mathrm{~W} 0 \Omega \pm 5 \%$)	[L14]
	00	VRO-RC 2 EYOOQJA	A		c	Resistor ($1 / 4 \mathrm{~W} 0 \mathrm{O}+5 \%$)	[L15]
	301	$1 \mathrm{VRD-R2EYO} \mathrm{\cap O.J}$.	$\triangle \Delta$		\checkmark		[L16]
A	302	RFiLN2011SCZZA	C		C	Coil (SBT-0260)	[L17]
A	303	RFiLN2011SCZZA	C		c	Coil (SET-0260)	[18]
	304	VRO-RC2EYOOOJ	A A		c	Resistor ($1 / 4 \mathrm{~W} 0 \mathrm{n} \pm 5 \%$)	[1217
A	305		AM		B	Photo coupler (PC 847)	
4	30	$6 \mathrm{VHPPC817CD/-1}$	A C		B	Photo coupler (PC817CD)	[PC2]
4		7 VHPPC817CD/-1	A C		8 - ${ }^{\text {P }}$	hotocoupler (PC817CD)	$[\mathrm{PC4}]$
4	308		D		B	Photo coupler (PC8170)	[PC5]
	309	\checkmark SBS $108 / / / / /-1 \mathrm{~A}$	E		,	Transistor (BS 108)	[Q1]
	310	V S2SC2412KR-1A	D		B	Transistor (2SC2412KR)	[Q101]
	31.	$V R S-R E 3 A A 222 J A$	A		C	Resistor ($1 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$)	[R2]
	312	$V R S-R E 3 A A 103 J A$	A		C	Resistor ($1 \mathrm{~W} 10 \mathrm{~K} \cap \pm 5 \%$)	[R4]
	313	VRS-RE3DA750JA	L		c	Resistor ($2 \mathrm{~W} 750 \pm 5 \%$)	[05]
	314	VRD-HT2HY150JA	A		c	Resistor ($1 / 2 \mathrm{~W} 15 \mathrm{n} \pm 5 \%$)	R6]
	315	VRO-HT2HY150J	A A		C	Resistor ($1 / 2 \mathrm{~W} 150 \pm 5 \%$)	
	316	VRD-HT2HY474J	$A A$		C	Resistor ($1 / 2 \mathrm{~W} 470 \mathrm{~K} \Omega \pm 5 \%$)	[R8]
	317	VRS-TS2AD221J	$A A$		c	Resistor ($1 / 10 \mathrm{~W} 2200 \pm 5 \%$)	[R101]
	318	VRS-TS2AD221J	$A A$		C	Resistor ($1 / 10 \mathrm{~W} 2200 \pm 5 \%$)	R102]
	319	VRS-TS2AD221J	A A		C	Resistor ($1 / 10 \mathrm{~W} 2200 \pm 5 \%$)	[8103]
	320	VRS-IS2AD221JA	A		C	Resistor ($1 / 10 \mathrm{~W} 2200 \pm 5 \%$)	[R104]
	321	VRS-TS2AD221JA	A		c	Resistor ($1 / 10 \mathrm{~W} 220 \mathrm{O} \pm 5 \%$)	[R105]
	322	VRS-TS2AOOOOJ	A A		c	Resistor ($1 / 10 \mathrm{~W}$ On -370)	[R107]
	323	VRS-TS2AD104JA	A		c	Resistor ($1 / 10 \mathrm{~W} 100 \mathrm{~K} \cap \pm 5 \%$)	[R109]
		VRS-TS2AD000JA	A		c	Resistor ($1 / 10 \mathrm{~W}$ On $\pm 5 \%$)	[R110]

8. TEL-Liu PWB unit

NO.	PARTS CODE	$\begin{array}{\|l\|} \hline \text { PRICEE } \\ \text { RANK } \\ \hline \end{array}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION	
325	VRS-TS2AD122J	A A		C	Resistor ($1 / 10 \mathrm{~W} 1.2 \mathrm{~K} \Omega \pm 5 \%$)	
326	VRS-TS2AD303J	AA		C	Resistor (1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R115]
327	$V R S-T S 2 A D 203 \mathrm{~J}$	AA		C	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)	[R116]
328	VRS-TS 2 AD 753 J	A A		C	Resistor ($1 / 10 \mathrm{~W} 75 \mathrm{~K} \Omega \pm 5 \%$)	[R117]
329	VRS-TS2AD203J	A A		C	Resistor_(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)	[R123]
330	VRS-TS2AD000」	A A		C	Resistor ($1 / 10 \mathrm{~W}$ On $\pm 5 \%$)	[R124]
331	VRS-TS2AD225J	A A		C	Resistor ($1 / 10 \mathrm{~W} 2.2 \mathrm{M} \Omega \pm 5 \%$)	[R125]
332	VRS-TS2AD000J	A A		C	Resistor ($1 / 10 \mathrm{~W} 0 \mathrm{O} \pm 5 \%$)	[R126]
333	VRS-TS2AD203 J	A A		C	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)	[R127]
334	VRS-TS2AD333 J	AA		c	Resistor_($1 / 10 \mathrm{~W} 33 \mathrm{~K} \Omega \pm 5 \%$)	[R127]
335	VRS-TS2AD622]	${ }_{\text {A }}^{\text {A }}$.		C	Resistor ($1 / 10 \mathrm{~W} 6.2 \mathrm{~K} \Omega \pm 5 \%$)	[R129]
336	VRS-TS2AD103J	A A		C	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$)	R130]
337	$V R S-T S 2 A D 203 \mathrm{~J}$	A A		C	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)	R132]
338	VRS-TS2AD103J	A A		C	Resistor ($1 / 10 \mathrm{~W}$ 10kn $\pm 5 \%$)	R1337
339	VRS-TS2AD203 J	A A		\bar{C}	Resistor_(1/10W_20K $0+5 \%$)	R134]
340	VRS-TS2AD333J	A A		C	Resistor ($1 / 10 \mathrm{~W} 33 \mathrm{~K} \Omega \pm 5 \%$)	R135]
341	VRS-TS2AD203J	A A		C	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)	R136]
342	VRS-TS2AD203 J	AA		C	Resistor ($1 / 10 \mathrm{~W} 20 \mathrm{~K} \Omega \pm 5 \%$)	[R140]
343	$V R S-T S 2 A D 753 \mathrm{~J}$	AA		C	Resistor ($1 / 10 \mathrm{~W} 75 \mathrm{~K} \Omega \pm 5 \%$)	R141]
344	VRS-TS2AD302J	A A		C	Resistor ($1 / 10 \mathrm{~W} 3.0 \mathrm{~K} \Omega \pm 5 \%$)	R142]
345	VRS-TS2ADI03J	A A		C	Resistor_(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	R143]
346	VRS-TS2AD685 J	A A		C	Resistor ($1 / 10 \mathrm{~W} 6.8 \mathrm{MS} \pm 5 \%$)	R144]
347	VRS-TS2AD164J	A A		C	Resistor ($1 / 10 \mathrm{~W} 160 \mathrm{~K} \Omega \pm 5 \%$)	R145]
350	$V R S-T S 2 A D 822 \mathrm{~J}$	A A		C	Resistor (1/10W $100 \Omega \pm 5 \%$)	[R147]
3 l	VRS-TS2AD333 J	A A		C	$\frac{\text { Resistor_(1/10w } 8.2 \mathrm{~K} \Omega \pm 5 \%)}{\text { Resistor (} 1 / 10 \mathrm{~W} 33 \mathrm{~K} \cap 5 \% \text {) }}$	[R148]
352	VRS-TS2AD821J	A A		C	Resistor (l/10W $820 \Omega \pm 5 \%$)	[R149]
353	$V R S-T S 2 A D 821 \mathrm{~J}$	A A		C	Resistor ($1 / 10 \mathrm{~W} 820 \Omega \pm 5 \%$)	[R151]
354	VRS TS2AD2031	A A		\bigcirc	Resistor (1/10W $20 \mathrm{KN}+5 \%$)	R152]
355	VRS-TS2AD623J	A A		C	Resistor ($1 / 10 \mathrm{~W} 62 \mathrm{~K} \Omega \pm 5 \%$)	[R153]
356	VRS-TS 2AD103	A A		C	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega \pm 5 \%$)	[R155]
357	$V R S-T S 2 A D 183 \mathrm{~J}$	A A		C	Resistor (1/10W $18 \mathrm{~K} \Omega \pm 5 \%$)	[R156]
358	VRS-TS 2 AD103 J	A A		C	Resistor ($1 / 10 \mathrm{~W} 10 \mathrm{~K} \Omega+5 \%$)	[R157]
359	VHD0R5G4842-1	A F		B	Diode (0R5G4B42)	[REC1]
360	VHDS12日 $60 / /-1$	AC		B	Diode (S12B60)	REC2]
361	RRLYZ3420SCZZ	AR		B	Relay (G6GN-20)	[RY1]
362	RRLYZ3420SCZZ	AR		B	Relay (G6GN-20)	[RY2]
363	RRLYZ3420SCZZ	AR		B	Relay (G6GN-2D)	[RY3]
364	VRD-RC2EY000J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[SP1]
365	VRD-HT2EY000J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[SP3]
367	PRDPAZ2190SCOZ	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[SP5]
368	PSPAZ2190SCZZ	A B		C	PWB spacer	SPACER]
369	QSW-S2166SC03	A C		B	Slide switch (HSW-1070-01-200)	[SW 1]
370	Q SW-Z2186SCZZ	A H		8	Slide switch (HSW-1071-01-200)	SW2]
371	RTRNZ2140SCZZ	AN		B	Switch (SPPY43)	[SW3]
372	RTRNi2142SCZA	A P		B	Transformer	[T1]
373	RVR-Q1402QCZZ	A D		B	Variable resistor (RS10M11AJ)	VR1]
374	RCRM-0091AFZZ	AE		B	Crystal (CSA3.58MG)	[$\times 1]$
375	VHEHZS3B1// 1	$A C$		B	Zener diode (HZS3B1)	[$\mathrm{XD1]}$
376	VHEHZS3B1///-1	A C		B	Zener diode (HZS3B1)	202
377	VHEMTZ5R6C $/-1$	A A		B	Zener diode (MTZ5R6C)	ZD4]
378	VHEMTZ5R1C/-1	A A		B	Zener diode (MTZ5R1C)	206]
379	VHEHZS3B1// -	AC		B	Zener diode (HZS3B1)	208]
380	VHEHZS3B1/ $/$ - -1	AC		B	Zener diode ($\mathrm{HZS3B1}$)	[209]
381	VHEHZS381///-1	$A C$		B	Zener diode (HZS3B1)	[2D10]
382	VHEHZS3B1// $/-1$	A C		B	Zener diode (HZS3B1)	[2D11]
383	VHERD18EL 2 <-1	A A		B	Zener diode (RD18EL2)	[2014]
384	VHEMTZ6R8B/-1	AB		B	Zener diode (MTZ6R8B)	2D15]
385	VHEMTZJ300B-1	A A		B	Zener diode (MTZJ300B)	[2D16]
386	QCNW-4260SCZZ	A A	N	C	Jumper wire	[D16]
	(Unit)					
901					Speech PWB unit (No. 1 - 91)	
902	DCEKL346ASC32	B T	N	E	TEL-Liu PWB unit (Include No. 901)	

9 Panel PWB unit

(9) Panel PWB unit

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION	
9	VRS-TP2BD000」	A A	1	C	Resistor ($1 / 8 \mathrm{~W}$ On $\pm 5 \%$)	[R5]
9	VRS-TP2BD104J\|A	A		C	Sistor_($1 / 8 \mathrm{~W}$ _100K ${ }^{\text {a }} \pm 5 \%$)	[R8]
	$V R S-T P 2 B D 1011$	A A		c	Resister (1/8W 100n $\pm 5 \%$)	[R9]
11	LANGH2 $70 \times \mathrm{XZZ}$	AD		C	Bezel	
12	PGUMM2 107 SCZZ	AB		C	Rubber	
13	VVLLF7174G6-1	$A P$		E	LCD (LLF7174G6)	
51	VHPGL3EG4 3 $/-1$	AB		B	LED (Green) (GL3EG43)	[AM]
52	V HPGL 3 EG 4 3 $/$ - 1	AB		8	LED (Green) (GL3EG43)	[AUTO]
53	RC-K1H104HCZZ	AC		C	Capacitor (50WV 0.1 $\mu \mathrm{F}$)	[C2]
54	RC-EZ2017SCZZ	AC		C	Capacitor ($16 \mathrm{WV} 22 \mu \mathrm{~F}$)	[C3]
55	QCNW-4174SCZZ	$A C$		C	LCD cable	CNLCD]
56	QCNCM2419SC2B	A E		C	Connector (22pin)	[CNPN]
57	$V \mathrm{VISN74LS145N}$	AH		B	IC (SN74LS145N)	$[\mathrm{ICl}]$
58	VRD-RC2EY000J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	[1]
59	VRD-RC2EY000J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	12]
60	$V R D-R C 2 E Y 000 J$	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	J3]
61.	$V R D-R C 2 E Y 000 J$	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	14]
62	$V R D-R C 2 E Y 000 \mathrm{~J}$	A A		C	Resistor ($1 / 4 \mathrm{~W}$ 0n $\pm 5 \%$)	[5]
63	$V R D-R C 2 E Y 000 J$	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	J6]
64	VRD-RC2EYOOOJ	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	17]
65	VRD-RC2EY000J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ on $\pm 5 \%$)	J8]
66	VRD-RC2EYOOOJ	A A		C	Resistor ($1 / 4 \mathrm{~W}$ On $\pm 5 \%$)	J9]
67	V HPGL3EG43\%-1	A B		B	LED (Green) (GL3EG43)	[MAN]
68	V SDTC 114ES $/-1$	AB		B	Transistor (DTC114ES)	[Q1]
69	V SDTC114ES, $/-1$	AB		B	Transistor (DTC114ES)	Q2]
70	VS - - . - - , - 1	AB		B	Transistor (DTC114ES)	03]
71	$V \mathrm{RD}$-RC2EY221JA	A		C	Resistor ($1 / 4 \mathrm{~W} 220 \mathrm{n} \pm 5 \%$)	R1]
72	VR-RC2EY221JA	A		C	Resistor ($1 / 4 \mathrm{~W} 220 \Omega \pm 5 \%$)	R2]
73	VRD-RC2EY221JA	A		C	Resistor ($1 / 4 \mathrm{~W}$ 220n $\pm 5 \%$)	R3]
74	VD-RC2EY622 JA	A		C	Resistor ($1 / 4 \mathrm{~W} 6.2 \mathrm{~K} \Omega \pm 5 \% / 3$	R4]
75	VRD-RC2EY102JA	A		C	Resister ($1 / 4 \mathrm{~W} 1.0 \mathrm{~K} \Omega \pm 5 \%$)	R5]
76	QSW-K2194SC2ZA	B		B	Tact switch (SOR - 123HS)	[SW]
					LCD PWB unit (No.1~13)	
					Panel PWB unit (No51~76)	
	(Unit)					
901	DCEKP335ASCO11B	D	1		Panel PWB unit	
	+				-	

SensorPWBunit

NO.	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION	
1	QCNCM7014SC0B	A D		B	Connector (2pin)	[CNLED(SNS)]
2	QCNCM7014SC0G	AB		C	Connector (7pin)	[CNSNS]
3	QSW-M2184SCZZ	$A D$		B	Door-switch (MSS-10A-6)	DRSNS]
4	VHGP1S58V//-1	AE		B	Photo interrupter (GP 1S58V)	[PC1]
5	$V H G P 1558 \mathrm{~V} / / 1$	AE		B	Photo interrupter (GP1S58V)	$[\mathrm{PC2} 2]$
6	$V R D-H T 2 E Y 271 \mathrm{~J}$	A A		C	Resistor ($1 / 4 \mathrm{~W} 220 \Omega \pm 5 \%$)	R9]
7	VRD-HT2EY271J	A A		C	Resistor ($1 / 4 \mathrm{~W} 220 \mathrm{n} \pm 5 \%$)	[R10]
	(Unit)					
901	DCEKS348ASC31	AW		E	Sensor PWB unit	

11 CCD PWB unit

NO.	PARTS CODE	PRIC RANK	NEW MARK	PART RANK		DESCRIPTION
	VCEAJA1EW 226 M	AB		C	Capacitor (25 WV 22 $\mu \mathrm{F}$)	C1]
2	VCKYTQ1EF104Z	A A		C	Capacitor ($25 \mathrm{WV} 0.1 \mu \mathrm{~F}$)	C2]
3	QCNCM7014SCOG	$A B$		C	Connector (7pin)	[CN1]
4	VHITCD12000-1	$A Z$		B	1 C (TCD1200D)	$[1 \mathrm{Cl}]$
5	\checkmark S2SC2412KS-1	$A B$		B	Transistor (2SC2412KS)	[01]
6	VRS-TP2BD222J	A A		C	Resistor ($1 / 8 \mathrm{~W} 2.2 \mathrm{~K} \Omega \pm 5 \%$)	R1]
7	VRS-TP280390J	A A		C	Resistor ($1 / 8 \mathrm{~W} 390 \pm 5 \%$)	R2]
8	PSHEZ2997SCZZ	AB		C	CCD sheet	
	(Unit)					
901	DCEKD333ASC01B	E		E	CCD PWB unit	

50 Hardware parts

| NO. | PARTS CODE | PRICE
 RANK | NEW
 MARK | PART
 RANK | D E S C R IP T I O N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1L $X-B Z 2178 \mathrm{SCZZA}$ | B | | C | Screw | |

50 Hardware parts

NO.	PARTS CODE	PRICE	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION
B2	LX-8Z2182SCZZ	A B		C	Screw
83	XHBSD30P05000	A A		c	Screw (3×5)
B4	XBPSD30P06K00	$A A$		C	Screw ($3 \times 6 \mathrm{~K}$)
B5	XBPSE30P08K00	$A A$		C	Screw ($3 \times 8 \mathrm{~K}$)
86	XBPSN40P06K00	AA		c	Screw ($4 \times 6 \mathrm{~K}$)
B7	XEBSD20P06000	AA		C	Screw (2×6)
88	XEBSD30P06000	AA		c	Screw (3×6)
B9	XEBSF3OP06000	A A		C	Screw (3×6)
810	XEBSD30P10000	$A A$		C	Screw (3×10)
B11	XEBSF30P08000	$A A$		C	Screw (3×8)
812	XEBSE3OP10000	AA		C	Screw (3×10)
B13	XEPSO30P06 ${ }^{\text {P }}$	AA		C	Screw ($3 \times 6 \mathrm{X}$)
814	$\times \mathrm{CBSD30P06000}$	AA		C	Screw (3×6)
815	XJPSD30P04000	AA		C	Screw (3×4)
816	XUBSD20P06000	A A		C	Screw (2×6)
817	XEBSE30P08000	A A		C	Screw (3×8)
B18	XEBSO30P08000	AA		C	Screw (3×8)
					-_-_-_-_-_-_-_
	$=$				
-					

PARTS CODE	NO.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART	
(C)					
CCABA2232SC12	2-101	BM	N	E	
CCNW-4171SC01	1-24	AR		C	
(D)					
DCEKC780FSCZZ	1-18	C A	N	E	
"	6-901	CA	N	E	
DCEKD333ASC01	4-9	BE		E	
/1	11-901	BE		E	
DCEKL346ASC32	1-16	BT	N	E	
"	8-902	BT	N	E	
DCEKP335ASC01	2-13	B D		E	
"	9-901	B D		E	
DCEKS348ASC31	1-33	AW		E	
"	10-901	AW		E	
DUNTK4925SCD3	5-12	AX		E	
[G]					
GCABA2232SCZD	2-4	AX	N	D	
GCABB $22315 C Z B$	1-22	B B	N	D	
GCABC2233SCZB	1-8	BA		D	
GLEGG2026SCZZ	1-20	A A		C	
[J]					
JBTN-2085 XHZC	2-9	AR		C	
JBTN-2086×HZC	2-11	A Q		C	
JBTN-2115SCZB	2-12	AG		C	
JBTN-2116SCZB	2- 8	A C		C	
18TN-2117SCZB	2-10	AC		C	
JKNBP2063SCZB	2- 7	AD		C	
1L 1					
	ง 11	A D		C	
LBNDJ2006SCZZ	1-14	A A		C	
LFRM-2147XH2Z	$4-4$	A Y		C	
LHLDW 2133SCZZ	i-23	AC		C	
LPLTG2678SCZZ	2- 18	AD		C	
L пL, 風L0643C227	$1^{2} 19$	AR		C	
LPLTM2685SCZZ	2-15 1	$A^{\prime} \mathrm{D}$		C	
LPLTM2687SCZ2	1-10	$\mathrm{I}_{\text {m }}{ }^{\text {r }}$		C	
LPLTP2676SCZZ	2- 20	AE		C	
LPLTP2677SC22	1-11	AH		C	
LPLTP2679SCZC	5-17	AS	A	C	
LPLTP2680SC2B	5-31	AN		C	
LPLTP2681SCZB	5-18	A?		C	
LPLTP2682SCZB	5-29	AH		C	
LPLTP2683SCZZ	5-19	$A \cup$		C	
LX-BZ2178SCZZ	50-81	AB		C	
LX-BZ2182SCZZ	50-82	\dot{A} B		C	
MLEVP2165SCZB	1- 32	${ }^{\prime} A^{\prime}$ 't		L	
MLEVP2166SCZZ12	- 6	AM		C	
MLEVP2169SCZZ $1-28 \mathrm{~A}$		C		C	
MLEVP2170SCZZ	1-29	AC		C	
MSPRC2660SCZZ	2- 5	AB		C	
MSPRC26815CZZ	2-33	A C		C	
MSPRD2655SCZZ	2-35	A C			
MSPRD2656SCZZ	2- 36	AC		C	
MSPRD2659SCZZ	1-31-	AB		C	
MSPRD2671SCZZ	1-30	AB		C	
MSPRP2512SCZZ	4- 8	AB		C	
MSPRP2535XHZZ	2- 29	AD		C	
MSPRP2618SCZZ	4- 5	AD		C	
MSPRP2619SCZZ	4- 3	AD		c	
MSPRP2652SCZZ	2-17	AD		C	
MSPRP2653SCZZ	1-7	AC		C	
MSPRP2658SCZZ	5-32	AC		C	
MSPRP2667SCZZ	1-46	AC		C	
MSPRT2657SCZZ	2-25	A B		C	
MSPRT2661SCZZ	2- 16	A B		C	
MSPRT2676SCZA	2- 19	AB		C	
(N)					
NBRGP2138×HZZ	1-6	$A D$		C	
NBRGP2141×HZZ	1-2 5 I. A			C	
/	2- 23	AH		C	
NGERH2210 ${ }^{\text {PHZZ }}$	1-12	AC		C	
NGERH2240XHZZ	1-13	AC		C	
NGERH2257SCZZ	1-3	AE		C	
NGERH2258SCZ2	1-26	AB		C	
11	2-22	A B		C	
	2. 6	AE		C	
	2-28	AE		C	
	1-48	AE		C	
$\begin{array}{\|l\|} \hline \text { NROLP } 2289 \mathrm{SCZZ} \\ \hline \text { NROLP2292SC2Z } \\ \hline \end{array}$	1-5			C	1

PARTS CODE	NO．	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \\ & \hline \end{aligned}$	NEW MARK	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \\ \hline \end{array}$	
RCORF2085SCZZ	3－228	AE		C	
－	3－239	AE		C	
RCRM－0091AFZZ	8－374	AE		B	
RCRSP2080SCZZ	6－290	AF		8	
RCRSP2083SCZZ	6－292	A．E		B	
RCRSQ2090SCZZ	6－293	AD		c	
RCRSZ7008SCZZ	6－291	AD		8	
RDENT2074SCZZ	1－17	BN		E	
＂	7－901	BN		E	
RFiLN2011SCZZ	8－299	${ }_{\text {AC }}$		C	
Jf	8－292	A C		c	
＂	8－302	AC		c	
＂	a－ 303	$A C$		C	
RMŌTZ2109SCZZ	1－9	AX		B	
RR－DZ4103ACZZ	3－227	A ${ }^{\text {A }}$		C	
RR－SZ2002SCZZ	3－234	AE		C	
RRLYZ3420SCZZ	8－361	AR		8	
＂	8－362	AR		B	
1	8－363	AR		B	
RTRN12142SCZA	8－372	AP		B	
RTRN22140SCZZ	8－371	AN		8	
RVR－Q1402QCZ2	8－373	$A D$			
（ 5 ）					
SPAKA4105SCZZ	5－5	$\mathrm{A}_{\text {m }}$		0	
SPAKA4106SCZZ	5－4	AM		D	
SPAKA4108SCZZ	5－16	AN		D	
SPAKA4109 SCZZ	5－15	AE		D	
SPAKA4274SCZZ	5－10	AB		D	
SPAKA4345SCZZ	5－3	AC		D	
SPAKC4202SCZZ	5－9	AP		D	
SPAKP4080SCZZ	5－1	AM		D	
SSAKA1340QCZZ	5－34	AB		D	
SSAKA2344QCZZ	5－21	A B		D	
SSAKA3001CCZ2	5－8	A A		D	
SSAKA3340QCZZ	5－33	A品		D	
SSAKA3341QCZZ	5－30	AB		D	
17 l					
TCADZ2139SCZZ	5－24	AE		D	
TCADZ2264SCZZ	5－25	AE		D	
TCAD22274SCZB	5－27	AD		D	
TGANE2036SCZZ	5－26	AC		D	
TINSE3397SCZ2	5－22	AZ	N	D	
TLABH3435SCZB	5－35	$A D$		D	
TLABP 3078 SCZZ	6－294	AA		D	
TLABS3420SCZZ	1． 51	AB	N	D	
TLABS3421SCZ2	1－52	$A B$	N	D	
TLABZ3418SCZZ	1－53	$A B$	N	D	
（U）					
UBATN2010SCZZ	6－1	AN		8	
UBNDA1008CCZZ	5－11	A A		C	
（V）					
VCCCTV1HH101J	3－222	$A A$		C	
，	6－72	A A		c	
＂	6－86	A A		C	
VCCCTV1HH180J	6－67	A A		C	
VCCOTV ${ }^{\prime \prime}$	6－68	A A		C	
VCCCTV1HH221J	6－57	AA		c	
＂	6－58	AA		C	
VCCCTV1HH300J	6－29	A A		c	
＂	6－30	AA		C	
／	8－221	AA		C	
＂	8－222	A A		c	
VCCCTVIHH330J	6－42	A A		C	
VCaCi＂	6－48	A A		c	
VCCCTVIHH470」	3－221	A A		C	
VCCCTV1HH5RO」	6－24	A A		c	
VCCSTVIHLIO2J	6－52	A A		c	
／I	6－53	A A		c	
11	6－81	A A			
	$8^{8} \quad 5$	A A		c	
＂	8－3	A A		c	
I	8－8	A A		c	
VCEAEA 1 AW 107 M	8－207	A B			
VCEAEA1AW226M	$8{ }^{8-} 5$	$\stackrel{\text { H }}{+}$		\square^{-}	
VCEAEA1AW2 27 M	8－205	AB		c	
VCEAEA 1 AW 476 M	8－212	$A B$		C	
VCEAEAIEW476M	8－213	AB		－	
＂	8－214	$A B$		C	
VCEAEAIHW 106 M	8－219	A A		c	
VCEAEAIHW3 34 M	8－208	A A		c	

PARTS CODE	NO．	PRICE RANK	$\begin{gathered} \text { NEW } \\ \text { MARK } \end{gathered}$	PART	
VCEAEA1HW335M	8－11	A A		C	
VCEAEA1HW474M	8－6	A A		C	
VCEAEAIVW226M	8－9	A A		c	
VCEAEUIEW106M	8－215	A A		C	
VCEAEU1HW105M	8－7	A A		c	
I＇	8－206	A A		c	
，	8－216	A A		C	
VCEAEUIHW475M	8－4	$A A$		c	
VCEAJALEW226M	11－1	AB		C	
VCEAPS 105 AF 1 H	6－10	$A B$		c	
VCEAPS $106 A F 1 E$	6－2	$A C$		C	
VCEAPS22GAFIC	6－12	$A C$		C	
－	6－13	AC		c	
－＂	6－14	AC		c	
VCEAPS 336AF1C	6－9	AC		C	
VCFYJU2EA474K	8－217	AD		c	
，	8－218	$A D$		C	
VCKRTQ1HR104K	3－223	$A B$		C	
VCKRTVIHR102K	3－220	$A B$		c	
VCKRTVIHRIO3K	3－219	$A B$		C	
VCKYCY1EF1042	6－5	A A		c	
＂	6－ 6	A A		C	
－${ }^{\prime \prime}$	6－7	A A		C	
VCKYCYIEF223Z	6－11	A A		c	
VCKYCY1HB102K	6－8	A A		c	
VCKYTQICF105Z	6－43	AE		c	
＂	6－45	AE		c	
＂	6－51	AE		c	
VCKYTQIEF104Z	6－47	A A		C	
＂	9－1．	A A		c	
＂	11－2	A A		c	
VCKYTQIHB104K	8－16	AB		c	
＂	8－19	AB		C	
VCKYTQ1HB222K	9－ 2	A A		c	
VCKYTQ1HB333K	8－10	A A		c	
VCKYTQ1HB472K	8－ 15	$A A$		C	
VCKYTQ1HB563K	8－ 22	$A A$		c	
＂	8－24	$A A$		c	
VCKYTVIEF1042	6－ 4	$A A$		c	
＂	6－21	$A A$		C	
＂	6－25	A A		c	
＂	6－26	A A		c	
＂	6－33	AA		c	
＂	6－34	$A A$		C	
＂	6－37	A A		c	
＂	6－39	$A A$		c	
＂	6－46	$A A$		c	
＂	6－ 50	$A A$		C	
＂	6－54	$A A$		C	
＂	6－55	A A		c	
＂	6－56	$A A$		C	
，	6－71	A A		C	
＂	6－73	A A		C	
＂	6－74	$A A$		C	
＂	6－75	A A		C	
＂	6－77	A A		C	
＂	6－79	A A		c	
／	6－82	AA		c	
＂	6－83	A A		C	
＂	6－84	$A A$		c	
I	6－85	A A		c	
＂	8－233	A A		c	
VCKYTV1H8102K	8－223	AA		C	
＂	8－224	$A A$		C	
＂	8－226	$A A$		C	
＂	8－242	$A A$		C	
VCKYTV1HE122K	8－232	$A B$		C	
CKYYTV1HB153K	8－． 18	A A		c	
CKYYTV1HB222K	6－15	A A		－	
＂	6－16	A A		c	
＂	6－17	AA		c	
＂	6－18	$A A$		C	
I	6－ 19	AA		c	
＂	6－22	$A A$		c	
11	6－23	AA		C	
1	6－27	A A		c	
／	6－28	$A A$		C	
II	6－ 31	$A A$		C	
＂	6－32	$A A$		C	
＂	6－41	$A A$		c	

PARTS CODE	NO.	PRICE NEW PARTRANK MARK RANK			
VCKYTV1HE222K	¢-44	${ }^{\text {A }}{ }^{\text {n }}$		C	
"	6-59	$\overline{A A}$		c	
II	6-60	A A		c	
/1	6-61	A A		c	
"	6-64	A A		c	
"	6-70	A A		c	
"	8-12	A A		C	
"	8-13	A A		-	
"	8-244	A A		c	
VCKYTV1HB223K	8-23	A A		C	
VCKYTVIHB272K	6-76	AA		c	
VCKYTV1H8273K	8-245	A A		c	
VCKYTV1HB331K	8-234	A A		C	
"	8-235	A A		C	
/1	a- 236	A A		C	
"	a- 237	AA		c	
II	a-238	A A		c	
II	a-239	AA		C	
/I	a-240	${ }_{\hat{A}}^{\hat{A}}$		C	
"	a- 241	A A		C	
VCKYTV1HB332K	8-14	A A		c	
VCKYTVIHB392K	8-21	AA		c	
"	8-246	AA		c	
N401/vimatila		A A		c	
VCKYTV1HB472K	6-80	$\sim^{A} n^{*}$		c	
$1 /$	$8=252$	${ }^{\wedge} \times A$		c	
VCKYTVIHB473K	8-20	$A A$		c	-
VCKYTV1HB681K	6-78	A A		c	
-	8-230	A A		c	
VCKYTV1HB821K1	2511^{-A}	A		C	
	$8^{\text {f }}$ L. 231	A A		c	
VCKYTVIHF2232	6 - 3 ,	$A A^{\circ}$		$\stackrel{1}{4}$	
"	6-20	AA		c	
"	6-35	A A		c	
/1	6-36	A A		c	
"	6-38	A A		c	
"	6-40	A A		c	
"	a- 62	AA		C	
"	6-63	A A		C	
"	$5-265$	A A		C	
"	6-66	A A		C	
"	6-69	A A		c	
"	a-22!	A A		c	
"	a. 227	AA		c	
"	a- 228	A A		c	
/1	8-229	A A		c	
"	8-243	A A		c	
"	8-247	A A		C	
"	8 8-250	A A A		c	
VCQYNA 1 HM 224 K	8 -1	AC		c	
VCQYNAIHM333K	8-204	A A		c	
"	a- 209	A A		c	
VCQYNU1HM334K	$8-210=$	A D		c	
"	8 8-211	AD		c	
VCSAPJ1AA475M	6-49n	${ }^{\text {a }}$ AB		C	
VHDDAN $212 \mathrm{~K} /-1$	8-26	AC		-	
"	8-27	AC		B	
VHDDSS 131//-1	8-265	A A		B	
VHODSS $133 / \% / 1$	8-261	AA		-	
"	8-262	$A A$		B	
"	8-263	$A A$		8	
"	8-266	A A		B	
"	8-267	AA		,	
VHOIMN10///-1	6-93	$A C$		8	
"	6-94	AC		B	
	$\stackrel{\text { ¢- }}{ }$	AC		B	
VHDRB421D//-1	8-86	A C		B	
"	8-87	$A C$		8	
VHDS12日60//-1	8-360	A C		8	
VHDOR5G4B42-1	8-359	AF		B	
VHD1N4 148//-1	7-14	A A		8	
VHDISS82///-1	8-264	$A B$		8	
VHEH2S3B1//-1	8-375	$A C$		B	
"	8-376	$A C$		8	
"	8-379	A C		8	
"	8-380	AC		-	
"	8-381	A C		B	
"	8-382	$A C$		B	

PARTS CODE	NO.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{gathered} \text { NEW } \\ \text { MARK } \end{gathered}$	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$	
VHEMT2J300B-1	a- 385	A A		B	
VHEMTZ2R0A/-1	a- 88	A A		B	
11	a- 89	A A		B	
VHEMTZ5R1C/-1	8-378	A A		\bar{B}	
VHEMTZ5R6B $/-1$	8-90	A B		B	
VHEMTZ5R6C/-1	8-377	A A		B	
VHEMT Z 6R8B/-1	a-384	A B		B	
VHERD18EL2/-1	a-3 33	A A		8	
VHE12C15////-1	8-91	$A C$		B	
VHGP1S58V//-1	10-4	$n_{n}{ }^{\text {a }}$ E		B	
" 11	10-5	A E		B	
VHiF255011/-1	6-102	AU		B	
VHiGM4256BSJ7	6-105	A X		B	
VHiHM51480018	6-106	Q		A	
VHiKS0066F00/	9-3	AR		B	
VHiLB1730//-1	6-108	A H		B	
VHiLH5268T410	6-99	A S		8	
VHiLM393PS/-S	6-121	A C		B	
VHiLZ95G38/-1	6-107	, A, X		B	
VHiMC14053BMF	6-115	AE		B	
VHiMC14066BMF	6-111	A D		B	
/1	6-112	AD		B	
VHiMC34012-1P	$7=.74$	A F		B	
VHiMC 341, 19	8-273	AF		B	
VHiMC74HCl4MF	6-117	AE		B	
VHiMC74HC32MF	6-119	AC		B	
VHiM66333FP-1	6-9a	BC		B	
VHiNJM318M/-F	6-109	AF		B	
VHiNJM4558D-1	8-270	AN		B	
/1	8-271	AN		B	
VHiNJM4558F-1	6-116	AD		8	
VHINJU40530-1	8-272	AF		8	
VHiNJU6355E-1	6-120	AM		8	
VHIPST600CMT1	6-103	AE		B	
VHiR96SHF, $/$ C-1	6-97	B D		B	
VHISN74HCO4NS	6-114	AC		B	
"	6-118	AC		B	
VHiSN74LS145N	9-57	AH		B	
VHiSN7406NS-1	6-113	A F		B	
VHiS7235F2F-1	8-277	AM		B	
VHiTA31065A-1	8- 2a	AK		B	
VHiTCD 1200D-1	11-4	A Z		B	
VHITHS56////-1	8-275	AN		B	
"	8-276	AN		B	
VHiLUR4CN/-F	6-110	AN		B	
VHiULN2003AN/	\square^{2-2681}	L5		日	
/1	8-269	AE		B	
VHi27020FCB0B	6-123	BM	N	B	
VHi43257AG10L	6-101	A Y		B	
VHi $64180 \mathrm{ZRS08}$	6-100	i x		B	
VHi 74 HCU04F-1	6-104	A C		B	
VHPGL3EG43/-1	9-51	AB		R	
11	9-52	AB		8	
"	9-67	A B		B	
VHPLT4657E7-1	4- 11	A Y		B	
VHPPC817CD/-1	8-306	A C		B	
11	8-307	AC		8	
	$8-308$	A D		B	I
VHPPC847////-11	a-305	A M		B	
VHVICPN20 $/, /-1$	6-96	AD		B	
VHV3P10P1///-1	8-201	AM		B	
VRD-HT2EY000J	8-365	A A		C	
"	8-366	A A		C	
VRD-HT2EY271J	10- 6	A A		C	
"	10^{-}?	A A		C	
VRD-HT2HY150J	8-47	A A		C	
\#	8-314	A A		C	
"	8-315	A A		C	
VRD-HT2HY331J	6-146	AA		C	
"	¢-147	A A		C	
VRD-HT2HY474 J	- 316	A A		C	
	8-291	A A		C	
11	8-2913	I AA		c	
"	8-294	AA		C	
"	8-295	A A		C	
"	8-296	A A		C	
"	8-297	AA		C	
"	8-298	AA		C	
"	8-299	A A		C	
"	8-300	A A		C	

PARTS CODE	NO.	PRICE RANK	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	
VRD-RC2EY000J	8-301	A A		C	
II	8-304	A A		C	
"	8-364	A A		C	
11	9- 58	AA		C	
11	9-59	A A		C	
$1 /$	9-60	A A		C	
"	9-61	A A		C	
"	9-62	AA		C	
11	9-63	A A		C	
"	9-64	AA		C	
II	9-65	AA		C	
"	9-66	AA		C	
VRD-RC2EY102J	9-75	A A		C	
VRD-RC2EY221J	9-71	A A		C	
"	9-72	A A		C	
"	9-73	AA		C	
VRD-RC2EY622J	9-74	AA		C	
VRS-CYIJD103J	6-143	AA		C	
VRS-CY1JD163J	6-141	AA		C	
VRS-CY1JD221J	6-138	A A		C	
VRS-CY1JD222J	6-139	AA		C	
"	6-140	AA		C	
"	6-142	AA		C	
VRS-CY1J0224J	6-145	AA		C	
VRS-CY1JD470J	6-144	A A		C	
VRS-HT3AA151J	8-39	A A		C	
VRS-RE3AA103J	8-312	AA		C	-
VRS-RE3AA222J	8-311	A A		C	
VRS-RE3DA750J	8-313	AL		C	
VRS-TP2BDO00J	6-124	AA		C	
\#	6-125	A A		C	
II	6-126	AA		C	
"	6-127.	A A		C	
"	6-128	A A		C	
"	6-204	AA		C	
11	9-8	A A		C	
VRS-TP2B0101J	6-202	A A		C	
"	9-10	A A		C	
VRS-TP2BD104J	9-9	AA		C	
VRS-TP280222J	11-6	A A		C	
VRS-TP2BD390J	11-7	AA		C	
VRS-TP2BD561J	6-289	AA		C	
VRS-TP2BD562J	9-4 4	AA		C	
"	9- 5	A A		C	
/1	9- 6	AA		C	
"	9-7	AA		C	
VRS-TS2AD000J	6-158	AA		C	
II	6-160	AA		C	
11	6-161	A A		C	
11	6-173	AA		C	
11	6-195	$A A$		C	
"	6-197	AA		C	
11	6-225	A A		C	
11	6-228	$A \bar{A}$		C	
11	6-231	AA		C	
/1	6-288	AA		C	
"	8-29	A A		C	
11	8-278	AA		C	
"	8-279	AA		C	
11	8-280	A A		C	
11	8-281	AA		C	
11	8-282	AA		C	
11	8-283	A A		C	
II	8-284	AA		C	
11	8-285	AA		C	
11	8-286	AA		C	
"	8-287	AA		C	
"	8-288	A A		C	
"	8-289	A A		C	
$1 /$	8-322	AA		C	
"	8-324	AA		C	
11	8-330	A A		C	
11	8-332	A A		C	
VRS-TS2AD100J	6-155	A A		C	
1	6-207	AA		C	
11	6-208	A A		C	
$1 /$	6-209	AA		C	
"	6-210	AA		C	
"	6-213	A A		C	
"	6-281	A A		C	

PARTS CODE	NO.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$	
VRS-TS2AD100J	6-282	A A		C	
/1	6-289	A A		C	
11	6-284	A A		C	
11	6-285	A A		C	
VRS-TS2AD101J	6-171	A A		C	
"	6-186	AA		C	
"	6-243	A A		C	
11	8-349	A A		C	
VRS-TS2AD102J	3-224	A A		C	
"	6-134	A A		C	
"	6-136	A A		C	
"	6-137	A A		C	
II	6-164	AA		C	
"	6-179	A A		C	
"	6-189	A A		C	
11	8- 56	A A		C	
"	8-68	A A		C	
11	8-79	A A		C	
11	8-84	A A		C	
VRS-TS2AD103J	6-159	A A		C	
"	6-163	A A		C	
11	6-170	$A A$		C	
"	6-193	$A A$		C	
"	6-196	A A		C	
II	6-198	AA		C	
"	6-199	A A		C	
"	6-200	A A		C	
"	6-201	A A		C	
"	6-203	AA		C	
"	6-206	A A		C	
"	6-216	A A		C	
"	6-217	A A		C	
"	6-219	A A		C	
"	6-222	A A		C	
"	6-224	AA		C	
"	6-236	A A		C	
/1	6-238	A A		C	
"	6-239	A A		C	
"	(5-240	A A		C	
/1	6-241	AA		C	
/1	6-244	A A		C	
/1	6-246	A A		C	
11	6-247	A A		C	
"	6-248	A A		C	
II	6-249	A A		C	
11	6-251	A A		C	
$1 /$	6-252	A A		C	
"	6-253	A A		C	
"	¢-2544	AA		C	
/1	6-255	A A		C	
//	6-266	AA		C	
"	6-267	A A		C	
/	6-268	A A		C	
11	6-269	A A		C	
"	6-270	A A		C	
"	6-287	AA		C	
11	8- 40	A A		C	
/1	8-67	A A		C	
11	8-71	A A		C	
"	8-72	AA		C	
"	8-336	AA		C	
"	8-338	A A		C	
11	8-345	AA		C	
"	8-356	AA		C	
"	8-358	AA		C	
VRS-TS2AD104J	8- 74	AA		C	
II	8- 82	A A		C	
11	8-323	A A		C	
VRS-TS2AD105J	6-227	A A		C	
II	a- 53	A A		C	
11	8- 55	AA		C	
"	8-73	AA		C	
VRS-TS2AD122J	8-325	AA		C	
VRS-TS2AD124J	3-226	AA		C	
VRS - TS 2AD151J	8-76	A A		C	
VRS-TS2AD164J	8-347	AA		C	
VRS-TS2AD182J	- $0 \cdot 15$	A A		C	
VRS-TS2AD183J	8-46	A A		C	
$\%$	$0^{8} 357$	A A		C	
VRS-TS2AD201」	6- 194	AG	N	C	

PARTS CODE	NO．	PRICE RANK	$\begin{gathered} \text { NEW } \\ \text { MARK } \end{gathered}$	PART RANK	
VRS－TS2AD202」	6－ 176	${ }^{\prime} \mathrm{A} A$		C	
／	$0=185$	A A		C	
＂	8－ 51	AA		C	
VRS－TS2AD203J	6－327	A A		C	
＂	a－ 329	$A^{\prime} A^{\prime}$		C	
＂	a－ 333 I	A A		C	
＂	a－337	AA		c	
＂	8－ 339	A A		C	
／	\＆ 341	A A		C	
／	8－342	A A		C	
＂	8－354	A A		C	
VRS－TS2AD204J	8－ 41	AA		C	
＂	8－ 66	AA		C	
VRS－TS2AD221J	3－237	A A		C	
＂	6－187	A A		C	
＂	8－ 59	A A		C	
＂	8－317	A A		C	
II	8－318	A A		C	
＂	8－319	AA		C	
＂	8－320	A A		C	
＂	8－321	A A		C	
VRS－TS2AD222J	3－225	A A		C	
＂	6－177	A A		C	
／1	6－178	A A		C	
／1	6－180	A A		C	
／1	6－la4	A A		C	
／1	6－191	A A		C	
＂	8－43	A A		C	
	a－ 58	A A		C	
＂	a－ 81	AA		C	
11	a－a5	A A		C	
VRS－TS2AD223J	6－286	A A		C	
＂	8－49＇	A A		C	
／1	8－ 50	AA		C	
11	8－ 57	AA		C	
VRS－TS2AD225J	8－ 54	A A		C	
＂	8－331	AA		C	
VRS－TS2AD244J	8－63	A A		C	
VRS－TS2AD271J	6－148	A A		C	
＂	6－149	A A		C	
＂	6－150	A A		C	
＂	6－151	A A		C	
＂	6－152	A A		C	
＂	6－153	A A		C	
II	6－154	A A		C	
＂	6－220	A A		C	
＂	6－221	A A		C	
＂	6－223	A A		C	
＂	6－232	AA		C	
＂	6－233	A A		C	
＂	6－237	A A		C	
＂	6－245	A A		C	
＂	6－261	A A		C	
＂	6－262	AA		C	
＂	6－263．	AA		C	
＂	6－265	AA		C	
VRS－TS2AD272J	8－61－	A A		C	
＂	8－348	A A		C	
VRS－TS2AD273J	3－232	A A		C	
VRS－TS2AD302J	6－215	A A		C	
＂	8－77	A A		C	
／	8－83	A A		C	
11	8－344	AA		C	
VRS－TS2AD303」	8－78	A A		C	
II	8－326	A A		C	
VRS－TS2AD330J	6－135	A A		C	
／	6－156	A A		C	
／1	6－166	A A		C	
＂	6－271	AA		C	
＂	6－272	A A		C	
＂	6－ 773	\triangle A		\bigcirc	
＂	6－274	A A		C	
／1	6－275	A A		C	
11	6－276	A A		C	
11	6－277	A A		C	
11	6－278	A A		C	
／	6－279				
11	6－280	A A		C	
VRS－TS2AD331」	a－ 8	8 A A		1 c	
VRS－TS2AD332	6－230	－AA		1 c	－

PARTS CODE	NO．	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK	
VRS－TS2AD333J	8－334	A A		C	
＂	8－340	$A A$		C	
＂	8－351	A A		C	
VRS－TS2AD391J	6－188	AA		C	
VRS－TS2AD392J	6－175	AA		C	
VRS－TS2AD433J	8－ 44	AA		C	
VRS－TS2AD471J	6－192	A A		C	
＂	6－257	A A		C	
II	6－258	A A		C	
／	6－259	A A		C	
／I	6－260	A A		C	
＂	6－264	A A		C	
VRS－TS2AD472J	6－162	A A		C	
＂	6－167	$A A$		C	
＂	6－168	A A		C	
／	6－169	A A		C	
＂	6－172	A A		C	
＂	6－181	A A		C	
／1	6－183	A A		C	
＂	6－250	A A		C	
VRS－TS2AD473J	3－231	A A		C	
／	6－234	AA		C	
＂	6－235	AA		C	
VRS－TS2AD511J	a－ 60	A A		C	
VRS－TS2AD514J	a－ 48	AG		C	I
＂	a－ 64	AG		C	
＂	a－ 65	A G		C	
VRS－TS2AD561J	6－182	A A		C	
VRS－TS2AD562J	6－10j	AA		C	
／	6－226	A A		C	
＂	6－229	AA		C	
＂	6－256	A A		C	
11	8－42	AA		C	
VRS－TS2AD622J	8－335	A A		C	
VRS－TS2AD623J	8－355	A A		C	
VRS－TS2AD682J	3－229	AA		C	
VRS－TS2AD685 J	8－346	A A		C	
VRS－TS2AD751J	8－ 45	A A		C	
11	8－75	A A		C	
VRS－TS2AD752J	8－69	A A		C	
VRS－TS2AD753j	8－328	A A		C	
－ 11	8－343	A A		c	
VRSUSSAD820．	8	A A		c	
－VRS－TS2AD821J	6－242	A A		C	
／1	8－62	A A		C	
／1	8－ 352	${ }^{\text {A }}$ A A		C	
11	a－ 353	$A^{\prime} A$		C	
VRS－TS2AD822J	6－174	AA		C	
VRS $/ 1$	6－190	A A		C	
＂	8－350	A A		C	
VRS－TS2AD912J	8－ 52	A A		C	
VRS－TV2AB112J	3－236	AA		c	
VRS－TV2AB752J	3－230	A A		C	
VRSTS2AD1183F	6－218				
VRSTS2AD1742F	6－211	A公		E	
VRSTS2AD4752F	6－200	A A		C	
VRSTS2AD8662F	6－212	A A		C	
＂	6－ 214	A A		C	
VSBS108／／／／／－1		A E		El	
11	B－ 309	A E		B	
VSDTA114EK／－1	6－133	AB		B	
VSDTC114EK／－1	5－131	A ${ }^{\text {B }}$		B	
＂	6－132	AB		B	
VSDTC114ES／－1	9－ 68	AB		B	
＂	9－ 69	AB		B	
＂	9－70	$A B$		B	
VS2SA1037KR－1	8－ 35	AB		B	
VS2SA1727／／－1	8－31	AE		B	
II	8－ 34	AE		日	
VS2SC2412KR－1	8－ 33	AD		8	
＂	8－ 36	AD		B	
＂	8－ 37	AD		8	
11	8－310	AD		8	
VS2SC2412KS－1	6－129	AB		B	
＂	6－130	$A B$		B	
＂	11－5．	AB		B	
VS2SC4061K／－1	8－ 32	AC		B	
11	8－38	$A C$		8	
VVLLF7174G6－1	9－13	A P		E	

PARTS CODE	NO.	PRICE RANK	$\begin{array}{r} \text { NEW } \\ \text { MARK } \end{array}$	PART RANK	
X]					
XBPSD30P06K00	50-84	A A		C	
XBPSE30P08K00	50-85	A A		C	
XBPSN4OP06K00	50-86	A A		C	
XEBSD20P06000	50-87	A A		C	
XEBSD30P06000	50-B8	A A		C	
XEBSD30P08000	50-B18	AA		C	
XEBSD30P10000	50-810	A A		C	
XEBSE30P08000	50-817	A A		C	
XEBSE30P10000	50-B12	A A		C	
XEBSF30P06000	50-89	AA		C	
XEBSF30P08000	50-B11	A A		C	
XEPSD30P06×00	50-B13	A A		C	
XHESD30P05000	50-B3	A A		C	
XHBSD30P06000	50-814	AA		C	
XJPSD30P04000	50-815	A A		C	
XUBSD20P06000	50-816	A A		C	
[0]					
OCBBFZ891542\%	7-4	AC		C	
OCBFBZ0098ZZ	7-71	AC		C	
OCBLRHO3082Q/	7-66	AM		C	
OCBLRS010122/	7-68	AC		C	
OCBLRS010322/	7-67	AC		C	
OCBMRS0029ZZ	7-70	AG		C	
OCBMRZ037822/	7-69	A F		C	
OCBPCZO1602Z	7-63	AE		C	
OCBPCZ01612Z/	7-62	A F		C	
OCBPFZ0242Z2!	7-65	AL		B	
0 CBPJCZZ0037/	7- 58	A G		A	
0CBPJT011522/	7- 59	AF		A	
OCBPKZ0194Z2/	7-61	AC		C	
OCBPZZ06042Z/	7- 3	AC		C	
0 CBPZZ073922/	7-64	AE		C	
$0 \mathrm{CBUAC} 0004 \mathrm{DZ/}$	7-11	$A C$		B	
OCBUAC0056BZ	7-9	AD		B	
$0 \mathrm{CBUACOO98AZ/}$	7-10	AG		B	
OCBUAGOO91A2/	7- 8	A Q		B	
OCBUBB0178DZ/	7-12	A G		B	
OCBUBE0187AZ	7-17	$A G$		B	
$0 \mathrm{CBUBCO220BZ/}$	7-13	AD		8	
$0 \mathrm{CBUBCO} 221 \mathrm{AZ} /$	7-15	$A C$		B	
$0 \mathrm{CBUBC0280B2/}$	7-16	AC		B	
OCBUBDAA3R0C?	7-19	AC		C	
OCBUBDAAGR2C/	7-21	AC		8	
OCBUBDAC2700/	7-18	AC		B	
0 CBUBDAF150日 $/$	7- 28	A_n		8	
OCBUBDAE3000/	7-22	AD		B	
OCBUCBOL12AII.	7-7	AK		B	
OCBUCCO010FZ/	7- 6	AC		B	
OCBUCCO013DZ	7-5	AM		B	
OCBUDC0139AZ/	7-23	A N		B	
OCBUDZ00522Z!	7-60	A G		B	
OCBUEEB222BA,	7-34	AC		C	
OCBUEEB223BA/	7- 27	AC		C	
OCBUEE82718A/	7- 35	AA		C	
OCBUEEB272BA/	7- 37	A A		C	
OCBUEEB330BM/	7-32	A A		C	
OCBUEEB471BA/	7-31	AC		C	
OCBUEEB564BA/	7-28	A A		C	
OCBUEEB822日A/	7-36	AA		C	
OCBUEEC474BG/	7-25	A 8		C	
OCBUEFC564BA/	7-24	AC		C	
OCBUEFD561AU/	7-33	AC		C	
0 CBUEFER 3 3 CH/	7- 26	AC		C	
OCBUEFE104CS/	7- 29	A B		C	
OCBUEFE391CL/	7-30	A C		C	
OCBUERALE471/	7- 56	A F		B	
$0 \mathrm{CBUFBA102DC/}$	7-38	A. O		B	
OCBUGAC122GK	7- 50	AG		C	
OCBUGAC221HD	7. 51	A2		C	
OCBUGAD $100 H D$	7-49	AC		C	
OCBUGAD390PR/	7-481	A E		C	
OCBUGAE 122 NS ,	7-53	$\overline{A H}$		C	
OCBUGAE 221HD/	7- 54	AD		C	
0 CBUGEQ820BR/	7-41	$A P$		C	
OCBUGCF1 040 CJF	1 7-55	$\overline{A C}$		C	
OCBUGCQ222AQ/	7-47	A E			
OCBUGCS222AP/	7- 52	A C		C	
0C8UGCU103BC/	7-42	A D		C	
OCBUGCU2218R/	7-43	A C		C	

CAUTION FOR BATTERY REPLACEMENT

(Danish) ADVARSEL!
Lithiumbatteri - Eksplosionsfare ved fejlagtig handtering.
Udskiftning má kun ske med batten af samme fabrikat og type.
Lever det brugte batten tilbage til ieverandoren.
(English)
Caution!
Danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the equipment manufacturer.
Discard used batteries according to manufacturer's instructions.
(Finnish)

VAROITUS

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitả kảytetty paristo valmistajan ohjeiden mukaisesti.
(French) ATTENTION
Il y a danger d'explosion s' il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommande par le constructeur.
Mettre au rebut les batteries usagées conformement aux instructions du fabricant.
(Swedish)
VARNING
Explosionsfare vid felaktigt battenbyte.
Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattfllverkaren. Kassera använt batten enligt fabrikantens instruktion.
$00 Z \cup \times 114 A=M \& E$

```
OOZFO235A/SME
```


S H A R P

COPYRIGHT © 1994 BY SHARP CORPORATION

All rights reserved
Printed in Japan.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

