SHARP SERVICE MANUAL

No. 00ZFO780A/SME

FACSIMILE

модед FO-780

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications 1-1
[2] Operation panel 1-2
[3] Transmittable documents 1-3
[4] Installation 1-4
[5] Quick reference guide 1-9
[6] Option imaging film specifications 1-10
CHAPTER 2. ADJUSTMENTS
[1] Adjustments 2-1
[2] Diagnostics and service soft switch 2-2
[3] Troubleshooting 2-17
[4] Error code table 2-18
CHAPTER 3. MECHANISM BLOCKS
[1] General description3-1
[2] Disassembly and assembly procedures 3-3
CHAPTER 4. DIAGRAMS
[1] Block diagram 4-1
[2] Wiring diagram 4-2
[3] Point-to-point diagram 4-3
CHAPTER 5. CIRCUIT DESCRIPTION
[1] Circuit description 5-1
[2] Circuit description of control PWB 5-2
[3] Circuit description of TEL/LIU PWB 5-8
[4] Circuit description of power supply PWB 5-11
[5] Circuit description of CIS unit 5-11
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT
[1] Control PWB circuit 6-1
[2] TEL/LIU PWB circuit 6-9
[3] Power supply PWB circuit 6-11
[4] Operation panel PWB circuit 6-13
CHAPTER 7. OPERATION FLOWCHART
[1] Protocol 7-1
[2] Power on sequence 7-2
CHAPTER 8. OTHERS
[1] Service tools 8-1
[2] IC signal name 8-4
PARTS GUIDE

CAUTION FOR BATTERY REPLACEMENT

(Danish) ADVARSEL!

Lithiumbatteri-Eksplosionsfare ved fejlagtig håndtering.
Udskiftning må kun ske med batteri af samme fabrikat og type
Levér det brugte batteri tilbage til leverandoren.
(English)
Caution!
Danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the equipment manufacturer.
Discard used batteries according to manufacturer's instructions.
(Finnish)
VAROITUS
Paristo voi räjähtää, jos se on virheellisesti asennettu.
Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.
(French)
ATTENTION
Il y a danger d'explosion s' il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommandé par le constructeur.
Mettre au rébut les batteries usagées conformément aux instructions du fabricant.
(Swedish) VARNING
Explosionsfare vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren

Kassera använt batteri enligt fabrikantens instruktion.

(German) Achtung

Explosionsgefahr bei Verwendung inkorrekter Batterien.
Als Ersatzbatterien dürfen nur Batterien vom gleichen Typ oder vom Hersteller empfohlene Batterien verwendet werden.
Entsorgung der gebrauchten Batterien nur nach den vom Hersteller angegebenen Anweisungen.

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications

Automatic dialing:	Rapid Key Dialing: 8 numbers Speed Dialing: 80 numbers	Effective scanning width: Contrast control:	210 mm max. Automatic/Dark selectable
Imaging film:	Initial starter roll (included with fax machine): 10 m roll (approx. 30 A4 pages)	Copy function: Telephone function:	Standard Standard (cannot be used for incoming/ outgoing if power fails)
	package, one roll yields approx. 95 A4 pages)	Power requirements: Operating temperature:	$\begin{aligned} & 230-240 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz} \\ & 5 \text { to } 35^{\circ} \mathrm{C} \end{aligned}$
Automatic document feeder:	10 sheets max.	Humidity:	Maximum: 85%
Memory size* :	512 MB (approx. 30 average pages)	Power consumption:	Stand-by: 2.3 W
Modem speed:	9600 bps with automatic fallback to 7200,4800 , or 2400 bps		Maximum: 115 W
Transmission time* :	Approx. 15 seconds (Sharp special mode)	Dimensions:	Width: 343 mm
Reception modes:	FAX, TEL, TEL/FAX, A.M.		Depth: 313 mm
Resolution:	Horizontal: 8 dots/mm Vertical: Standard: 3.85 lines $/ \mathrm{mm}$ Fine/Halftone: 7.7 lines/mm Super fine: 15.4 lines $/ \mathrm{mm}$	Weight: * Based on ITU-T (CCITT) special mode, excluding time only).	Height: 312 mm Approx. 3.4 kg Chart \#1 at standard resolution in Sharp for protocol signals (i.e., ITU-T phase C
Display:	16-digit LCD display	Note: The facsimile machin	Year 2000 compliant.
Recording system:	Thermal transfer recording		
Halftone (grayscale):	64 levels		
Applicable telephone line:	Public switched telephone network		
Compatibility:	ITU-T (CCITT) G3 mode		
Compression scheme:	MH, MR, Sharp		
Scanning method:	Sheet-feeder CIS (Contact Image Sensor)		
Effective recording width:	204 max.		
Input document size:	Automatic feeding: Width — 148 to 210 mm Length - 140 to 297 mm Manual feeding: Width — 148 to 210 mm Length - 140 to 600 mm		

As a part of our policy of continuous improvement, SHARP reserves the right to make design and specification changes for procduct improvement without prior notice. The performance specifications figures indicated are nominal values of production units. There may be some deviation from these values in individual units.

[2] Operation panel

1. SPEED DIAL key

Press this key to dial a 2-digit Speed Dial number.

2. REDIAL key

Press this key to automatically redial the last number dialed.
3. Display

This displays messages and prompts during operation and programming.
4. RECEPTION MODE key

Press this key to select the reception mode. An arrow in the display will point to the currently selected reception mode.
5. RESOLUTION key

Press this key to adjust the resolution and contrast before sending or copying a document.

6. VOLUME keys

Press these keys to adjust the volume of the speaker when the SPEAKER key has been pressed, or the volume of the ringer at all other times.

7. FUNCTION key

Press this key to select various special function.
8. Panel release

Grasp this finger hold and pull toward you to open the operation panel.
9. Number keys

Use these keys to dial numbers, and enter numbers and letters during number/name storing procedures.

10. HOLD/SEARCH key

Press this key to search for an automatic dialing number, or, during a phone conversation, press this key to put the other party on hold.

11. SPEAKER key

Press this key to hear the line and fax tones through the speaker before sending a document, or dialing a voice number.
Note: This is not a speakerphone. You must pick up the handset to talk with the other party.

12. Rapid Dial keys

Press one of these keys to dial a fax or voice number automatically. (Note that you must attach the Rapid Key labels.)
13. STOP key

Press this key to cancel operations before they are completed.
14. START/MEMORY key

Press this key to send or receive a document, or to scan a document into memory before sending it.
15. COPY/HELP key

When a document is in the feeder, press this key to make a copy. At any other time, press this key to print out the Help List, a quick refernce guide to the opeation of your fax.

[3] Transmittable documents

1. Document Sizes

Normal size	width	$148-216 \mathrm{~mm}$
	length	$128-297 \mathrm{~mm}$

*X Use document carrier sheet for smaller documents.

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.

2. Paper Thickness \& Weight

| Normal sizeADF 10
 sheets | Thickness | $2.4 \times 10^{-3}-3.4 \times 10^{-3} \mathrm{inch}$
 $(0.06-0.09 \mathrm{~mm})$ |
| :---: | :--- | :--- | :--- |
| | Weight | $0.15 \times 10^{-3} \mathrm{lbs} / \mathrm{inch}^{2}$
 $\left(52-80 \mathrm{~g} / \mathrm{m}^{2}\right)$
 $(14-20 \mathrm{lbs})$ |
| | Thickness | $2.4 \times 10^{-3}-7.9 \times 10^{-3} \mathrm{inch}$
 $(0.06-0.20 \mathrm{~mm})$ |
| | Weight | $0.15 \times 10^{-3}-0.20 \times 10^{-3} \mathrm{lbs} / \mathrm{inch}^{2}$
 $\left(52-157 \mathrm{~g} / \mathrm{m}^{2}\right)$ |

3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball-point pen, or felt-tipped pen can be transmitted.
Documents of normal contrast duplicated by a copying machine can also be transmitted.

- Diazo copy (blue print)

Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink, glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission.
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.

5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:

Normal size: max. ADF 10 sheets
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder. If force is used, double-feeding or a document jam may result.

6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.

Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width

210mm, max.

- Readable length

This is the length of the document sent minus 5mm from the top and bottom edges.

7. Use of Document Carrier Sheet

A document carrier sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $148 \mathrm{~mm}(\mathrm{~W}) \times 128 \mathrm{~mm}(\mathrm{~L})$.
- Carbon-backed documents

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracing paper written on with a soft, heavy lead pencil).
NOTES: • When using the document carrier, carefully read the instructions written on the back
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.

[4] Installation

1. Site selection

Take the following points into consideration when selecting a site for this model.
ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine. In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.
- The temperature should be between 5° and $35^{\circ} \mathrm{C}$.
- The humidity should be between 30% and 85% (without condensation).

ELECTRICITY

AC $230-240 \mathrm{~V}, 50 \mathrm{~Hz}$, earthed (3-prong) AC outlet is required.

Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone specialty stores.

If the machine is moved from a cold to a warm place...

If the machine is moved from a cold to a warm place, it is possible that the reading glass may fog up, preventing proper scanning of documents for transmission. To remove the fog, turn on the power and wait approximately 2 hours before using the machine.

TELEPHONE JACK

A standard telephone jack must be located near the machine. This is the telephone jack commonly used in most homes and offices.

- Plugging the fax machine into a jack which is not an jack may result in damage to the machine or your telephone system. If you do not know what kind of jack you have, or needed to have one installed, contact the telephone company.

2. Loading the imaging film (FO-3CR)

Your fax uses a roll of imaging film to create printed text and images.
The print head in the fax applies heat to the imaging film to transfer ink to the paper. Follow the steps below to load or replace the film.

- The initial starter roll of imaging film included with your fax can print about 30 A4 pages.
- When replacing the film, use a roll of Sharp FO-3CR imaging film. One roll can print about 95 A4 pages.

Note: If there is paper in the paper tray, pull the paper release plate forward and remove the paper before loading the imaging film.
(1) Open the operation panel by grasping the finger hold and pulling up.

(2) Pull the green release on the right side of the machine forward, and open the print compartment cover.

If you are installing the imaging film for the first time, go to Step 6.

Remove the imaging film cartridge from the print compartment (grasp the handle at the front of the cartridge) and turn it over.

(4) Remove the used film from the cartridge.

(5) Remove the four green gears from the used film.

DO NOT DISCARD THE FOUR GREEN GEARS!

(6) Remove the new roll of imaging film from its packaging.

- Do not yet remove the band that holds the rolls together.

(7) Insert the large gear into the green end of the empty spool. Make sure the two protrusions on the large gear fit firmly into the slots in the end of the spool.
Insert the remaining three gears into the spools, making sure the protrusion on each gear fits firmly into one of the slots in the end of each spool.
- If needed, pull the spools apart slightly to allow the gears to fit (the band will stretch).

(8) Insert the large gear into the large holder on the imaging film cartridge (make sure it clicks into place), and then insert the small gear on the other end of the spool into its holder.

(9) Cut the band that holds the two spools together. Unroll the film slightly and insert the small gears into their holders.

(10) Turn the cartridge over, grasp the handle, and insert the cartridge into the print compartment.

(11) Rotate the large gear toward you until the film is taut.

(12) Close the print compartment cover (press down on both sides to make sure it clicks into place), and then close the operation panel.

(13) Load paper in the paper tray and then press the following keys to initialize the film.

Note: Paper must be loaded before the film can be initialized. To load paper, see the following section, Loading the Printing Paper.

FUNCTION

Display shows:
INITIALIZE FILM

START/MEMORY
When to replace the imaging film.
Replace the imaging film when the display shows:

FILM END

Use the following imaging film, which is available from your dealer or retailer: Sharp FO-3CR Imaging Film

3. Assembly and connections

(1) Plug the power Lead into a $230-240 \mathrm{~V}, 50 \mathrm{~Hz}$, earthed (3-prong) AC outlet.

- Caution: When disconnecting the fax, unplug the telephone line cord before unplugging the power lead.
- Caution: The mains outlet (socket outlet) should be installed near the equipment and be easily accessable.
- The machine does not have a power on/off switch, so the power is turned on and off by simply plugging in or unplugging the power lead.

(2) Connect the handset as shown and place it on the handset rest.
- The ends of the handset cord are identical, so they will go into either jack

Make sure the handset cord goes into the socket marked with a handset symbol on the side of the machine!

Use the handset to make ordinary phone calls, or to transmit and receive documents manually.
(3) Insert one end of the telephone line cord into the adapter. Insert the other end of the line cord into the socket on the back of the fax marked TEL.LINE. Plug the adapter into the telephone socket on the wall.
Be sure to insert the telephone line cord into the TEL.LINE socket. Do not Insert into the TEL.SET socket.

(4) Attach the paper tray extension.

- Pull the paper release plate forward. Insert the paper tray extension horizontally into the notches in the paper tray. Rotate the paper tray extension up until it snaps into place.

(5) Attach the original document support.

Note: The original document support has a top side and a bottom side. If you cannot insert the tabs on the support into the holes, turn the support over.

4. Loading printing paper

You can load A4 size paper in the paper tray. The maximum number of sheets is:

- 60 for paper from 60 to $75 \mathrm{~g} / \mathrm{m}^{2}$
- 50 for paper from 75 to $90 \mathrm{~g} / \mathrm{m}^{2}$
(1) Fan the paper, and then tap the edge against a flat surface to even the stack.

(2) Pull the paper release plate toward you.

(3) Insert the stack of paper into the tray, print side down.
- If paper remains in the tray, take it out and combine it into a single stack with the new paper before adding the new paper.
- Be sure to load the paper so that printing takes place on the print side of the paper. Printing on the reverse side may result in poor print quality.

(4) Push the paper release plate back down.
- If the paper release plate is not pushed down, paper feed errors will result.
Note: When receiving faxes or copying documents, do not allow a large number of pages to accumulate in the output tray. This may obstruct the outlet and cause paper jams.

(5) Your fax has been set at the factory to print at normal contrast.

Depending on the type of paper you have loaded, you may find that you obtain better print quality by changing the setting to LIGHT. Press these keys:

FUNCTION

The display will show: PRINT CONTRAST
Press $\mathbf{1}$ to select NORMAL or $\mathbf{2}$ to select LIGHT.
NORMAL LIGHT
(1) or 2

The display will show: COPY CUT-OFF
Press the STOP key to return to the date and time display.
stop

5. Clearing a jammed document

If the original document doesn't feed properly during transmission or copying, or DOCUMENT JAMMED appears in the display, first try pressing the START/MEMORY key. If it doesn't feed out, remove it as follows:

Important:

Do not try to remove a document without opening the operation panel. This may damage the feeder mechanism.
(1) Open the operation panel by grasping the finger hold and pulling up.

(2) Remove the document.

(3) Close the operation panel, making sure it clicks into place.

6. Clearing jammed printing paper

(1) Pull the paper release plate forward and remove the paper.

(2) Open the operation panel (grasp the finger hold and pull up), and then pull the release on the right side of the machine forward to open the print compartment cover

(3) Gently pull the jammed paper out of the machine, making sure no torn pieces of paper remain in the print compartment or rollers.
(4) Close the print compartment cover (press down on both sides to make sure it clicks into place), and then close the operation panel.

(5) Reinsert the paper in the paper tray and push the paper release plate back down.

［5］Quick reference guide

INSTALLATION

1．Connect the handset as shown．
2．Plug the power cord into a grounded， $230-240 \mathrm{~V}$ outlet．
3．Plug one end of the telephone line into the TEL．LINE socket on the rear of the fax and the other end into the adapter．Plug the adapter into a telephone wall socket．

CONNECTING AN ANSWERING MACHINE AND／OR EXTENSION TELEPHONE

1．Remove the seal covering the TEL．SET socket on the rear of the fax．Connect an extension telephone or answering machine to the TEL．SET socket
2．If desired，connect an extension phone to the answering machine．
ENTERING YOUR NAME AND NUMBER
Note：Imaging film and paper must be loaded to perform the following operation．
1．Press：${ }^{\text {function }}$（3）\＃\＃）
Display shows：OWN NUMBER SET
2．Press：

3．Enter your fax number（max．of 20 digits）by pressing the number keys．
－If you make a mistake，press the HOLD／SEARCH key to move the cursor back to the mistake，then enter the correct number or letter
4．Press：

5．Enter your name by pressing the appropriate number keys as shown below．
－To enter two letters in succession that require the same key，press the SPEAKER key after entering the first letter．

$\begin{aligned} & A=\text { (2) } \\ & B=\text { (2) } \end{aligned}$		 T＝（8）（8）
$\mathrm{c}=$（2）（2）（2）	L＝（5）（5）（5）	u （3）（8）（
（3）	$\mathrm{m}=$ ©（）	$v=$（1）（8）（3）（3）
（3）（3）	$\mathrm{N}=$（6）（6）	$\mathrm{w}=$ ©（9
$\mathrm{F}=3$（3）（3）（3）	$\mathrm{o}=$（6） （6）	$\mathrm{x}=0$（）®（
（4）	P＝	$\mathrm{r}=$ ๑〇〇〇〇
（4）	$0=0$	$\mathrm{z}=$ ๑७〇〇〇〇
（4）（4）（4）		space $=$（1）（1）

Press either key one or more times to select and enter a symbol．

6．When finished，press

SETTING THE DATE AND TIME

Note：Imaging film and paper must be loaded to perform the following operation． Press：${ }^{\text {Function }}$ （3）$\# * *$
Display shows：DATE \＆TIME SET
Press the START／MEMORY key：\triangle stantmemory
Enter two digits for the Day（01 through 31）．
Enter two digits for the Month（01 through 12）．
Enter four digits for the Year（Ex：1999），
Enter two digits for the Hour（01 through 23）．
Enter two digits for the Minute（00 through 59）． When finished，press：
 （0）

STORING AND CLEARING NUMBERS FOR AUTOMATIC DIALING

Note：Imaging film and paper must be loaded to perform the following operation．
1．Press：${ }^{\text {Function }}$
（3）\＃
Display shows

2．Press $\mathbf{1}$ to store a number or $\mathbf{2}$ to clear a number．
3．Enter a 2－digit Speed Dial number（from 01 to 08 for Rapid Key Dialing，or 09 to 88 for Speed Dialing）．（If you are clearing a number，go to Step 7．）
4．Enter the full telephone／fax number．
5．Press：

6．Enter the name of the location by pressing number keys（max．of 20 charac－ ters）．（Refer to the letter entry table in ENTERING YOUR NAME AND NUMBER．）
7．Press：
 （3）
SENDING DOCUMENTS

Place your document（up to 10 pages） face down in the document feeder．

Normal Dialing
SPEAKER
1．Lift the handset or press O
2．Dial the fax number．
3．Wait for the reception tone（if a person answers，ask them to press their Start key）．
4．Press：

Rapid Key Dialing
Press the appropriate Rapid Key．Transmission will begin automatically．

Speed Dialing

1．Press：speed dial
2．Enter 2－digit Speed Dial number．
3．Press：

RECEIVING DOCUMENTS

Press：

FAX mode：The fax automatically answers on four rings and receives the incoming document．
TEL mode：

TEL／FAX mode：The fax machine automatically answers on two rings and receives faxes．Voice calls（including manually dialed fax transmissions）are signalled by a special ringing sound．
A．M．mode：Select this mode when an answering machine is connected to the fax and the answering machine is turned on．

[6] Option imaging film specifications (FO-3CR)

1. Structure

This article is composed of polyester film coated with heat-resistant layer, matt layer and hot melt ink layer, leader film and paper core. Ink film specification is "DNP standard ink film HC".

(1) Heat Resistant Layer
(2) Base Film
(3) Matt Layer
(4) Hot melt Ink Layer

2. Details of compositions

2-1. Base film

Heading	Requirements	Measuring method
Material	Polyethylene- terephthalate	-

2-2. Heat resistant layer

Heading	Requirements	Measuring method
Grade	HR Mixer P-5	-

2-3. Matt layer

Heading	Requirements	Measuring method
Grade	ML Sumi	-

2-4. Hot melt ink layer

Heading	Requirements	Measuring method
Grade	\#507W	-

CHAPTER 2. ADJUSTMENTS

[1] Adjustments

General

Since the following adjustments and settings are provided for this model, make adjustments and/or setup as necessary.

1. Adjustments

Adjustments of output voltage (FACTORY ONLY)

1. Install the power supply unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.

Output voltage settings

Output	Voltage limits
+5 V	$4.75 \mathrm{~V} \sim 5.25 \mathrm{~V}$
+24 V	$23.3 \mathrm{~V} \sim 24.7 \mathrm{~V}$

Connector No.	
Pin No.	CNPW
1	MG
2	MG
3	+24 V
4	+24 V
5	+24 V
6	DG
7	+5 V
8	DG
9	PSAVE

2. IC protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit. ICPs protect various ICs and electronic circuits from an overcurrent condition.
The location of ICPs are shown below:

(1) FU100 (ICP-S07) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If FU100 is open, replace it with a new one.

3. Settings

(1) Dial mode selector

DIAL mode (Soft Switch No. SWB4 DATA No. 3) (step 1) Select "OPTION SETTING".

KEY: FUNCTION (4)
DISPLAY: OPTION SETTING \Rightarrow PRESS $*$ OR \#
(step 2) Select "DIAL MODE".
KEY: Push \# until " DAIL MODE " is indicated because the number of \#s changes by the model.

DISPLAY:

$\Rightarrow 1=$ TONE, $2=$ PULSE
(step 3) Select, using "1" or "2".
KEY:

DISPLAY: TONE SELECTED
KEY: \square
DISPLAY: PULSE SELECTED
(step 4) End, using the "STOP" key.

[2] Diagnostics and service soft switch

1. Operating procedure

(1) Entering the diagnostic mode

Press FUNC $\rightarrow 9 \rightarrow \forall \rightarrow 8 \rightarrow \# \rightarrow 7$, and the following display will appear.
ROM Ver. FMUO $*$ After 2 sec: DIAG MODE
FMU0 *
Then press the START key. Select the desired item with the \forall key or the $\#$ key or select with the rapid key. Enter the mode with the START key. (Diag•specifications)

If the diag mode cannot be set, repeat the diag mode operation, performing the following operation.
After the power is turned on and "WAIT A MOMENT" is indicated, press the STOP key.

2. Diagnostic items

ITEM No.	DIRECT key	Contents	
1	1	SOFT SWITCH MODE	Soft switches are displayed and changed. List can be output.
2	2	ROM \& RAM CHECK	ROM is sum-checked, and RAM is matched. Result list is output.
3	3	AGING MODE	10 sheets of check patterns are output every 5 minutes per sheet.
4	4	PANEL KEY TEST	Panel keys are tested. Result list is output.
5	5	CHECK PATTERN	Check pattern is output.
6	6	SIGNAL SEND MODE	Various signals of FAX communication are output.
7	7	MEMORY CLEAR	Back-up memory is cleared, and is set at delivery.
8	8	SHADING MODE	Shading compensation is performed in this mode.
9	-	ALL BLACK PRINT	To check the print head, whole dots are printed over the interval of 2 m.
10	-	AUTO FEEDER MODE	Insertion and discharge of document are tested.
11	-	ENTRY DATA SEND	Registered content is sent.
12	-	ENTRY DATA RECEIVE	Registered content is received, and its list is output.

3. Diagnostic items description

3. 1. Soft switch mode

Used to change the soft switch settings.
The soft switch which is stored internally is set by using the keys.
The available soft switches are SW-A1 to SW-M2.
The content of soft switches is shown in page 2-5 to 2-16.
The contents are set to factory default settings.

3. 2. ROM \& RAM check

ROM executes the sum check, and RAM executes the matching test. The result will be notified with the number of short sounds of the buzzer as well as by printing the ROM \& RAM check list.
Number of short sounds of buzzer $0 \rightarrow$ No error

$$
\begin{aligned}
& 1 \rightarrow \text { ROM error } \\
& 2 \rightarrow \text { RAM error (32Kbyte) }
\end{aligned}
$$

3. 3. Aging mode

If any document is first present, copying will be executed sheet by sheet. If no document is present, the check pattern will be printed sheet by sheet. This operation will be executed at a rate of one sheet per $5 \mathrm{~min}-$ utes, and will be ended at a total of 10 sheets.

3. 4. Panel key test

This mode is used to check whether each key operates properly or not. Press the key on the operation panel, and the key will be displayed on the display. Therefore, press all keys. At this time, finally press the STOP key.
When the STOP key is pressed, the keys which are not judged as "pressed" will be printed on the result list.

- LED port of the contact image sensor (CIS) is kept on during the term from when start of the panel test mode to end with the STOP key.

3. 5. Check pattern

This mode is used to check the state of the printing head. It is ended with the following pattern printed on one printing sheet.
(1) Longitudinal stripe 2 Approx. 30 mm

2 black dots and 2 white dots are repeatedly progressed on one line.
(2) Full black

Approx. 30 mm

3. 6. Signal send mode

This mode is used to send various signals to the circuit during FAX communication. Every push of START key sends a signal in the following sequence. Moreover, the signal sound is also output to the speaker when the line monitor of the soft switch is on.
[1] No signal (CML signal turned on)
[2] 9600bps
[3] 7200bps
[4] 4800bps
[5] 2400bps
[6] 300bps (FLAG)
[7] 2100Hz (CED)
[8] $1100 \mathrm{~Hz}(\mathrm{CNG})$
[9] END

3. 7. Memory clear

This mode is used to clear the backup memory and reset to the default settings.

3. 8. Shading mode

The mode is used for the shooting compensation. For reading, set up the special original paper.
The shooting compensation memorizes the reference data of white and black for reading.
Moreover, the memorized data is not erased even if memory clear mode is executed.

3. 9. All black print

This mode is used to check the state of the printing head and intentionally overheat it. Whole dots are printed over the interval of 2 m . If it is overheated or the printing sheet is jammed, press STOP key for the end.

3. 10. Auto feeder mode

In this mode, a document is inserted and discharged to check the auto feed function.

After this mode is started, set a document, and the document feed will be automatically tested.

3. 11. Entry data send

This mode is used to send the registered data to the other machine and make the other machine copy the registered content.

Before sending in this mode, it is necessary to set the other machine at the entry data receive mode.
The following, information will be sent to the remote machine:

1. Telephone list data
2. Sender register data
3. Optional setting content
4. Soft switch content
5. Junk fax number list
6. Timer reservation data (only on the model which timer reservation is possible)
7. Recording setting list data

3. 12. Entry data receive

In this mode, the registered data sent from the other machine is received and the received data is registered in the machine. When this mode is used for receiving, the other machine must be in the entry data send mode.

After receiving is completed, the following lists are printed.

1. Telephone list data
2. Sender register data (The passcode No. is also printed if the poling function is provided.)
3. Optional setting list
4. Soft switch content
5. Junk fax number list
6. Timer reservation list (only model which timer communication is possible)
7. Recording setting list data

4. How to make soft switch setting

To enter the soft switch mode, make the following key entries in sequence.

5. Soft switch description

- Soft switch

$\begin{array}{\|l\|} \hline \text { SW } \\ \text { NO. } \end{array}$	$\begin{aligned} & \hline \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function		Initial setting	Remarks
			1	0		
$\begin{array}{\|c\|} \hline \text { SW } \\ 1 \\ \text { A6 } \end{array}$	1	Auto gain control (MODEM)	Enable	Disable	1	
	2	End Buzzer	Yes	No	1	
	3	Disconnect the line when DIS is received in RX mode	No	Yes	1	
	4	Equalizer freeze control (MODEM)	On	Off	0	
	5	Equalizer freeze control 7200 BPS only	No	Yes	0	
	6	CNG transmission in manual TX mode	Yes	No	1	
	7	Initial compression scheme for sharp fax in TX mode	MR mode	H2 mode	0	
	8	Reserved			0	
$\begin{array}{\|c\|} \text { SW } \\ \text { I } \\ \text { B1 } \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Recall interval	No. $=$Binary input 8 4 2 1 1 2 3 4 0 1 0 1		$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	
	5	Recall times	$\text { No. }=$		$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	
$\begin{array}{\|c} \hline \text { SW } \\ 1 \\ \text { B2 } \end{array}$	1	Dial pausing (sec/pause)	4 sec	2 sec	0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Waiting time after dialing	90 sec	45 sec	0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { B3 } \end{array}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{array}{\|c\|} \hline \text { SW } \\ \text { I } \\ \text { B4 } \end{array}$	1	Auto Dial Mode Delay timer of before line connect	3 sec	0 sec	1	
	2	Auto Dial Mode Delay timer of after line connect	3.6 sec	3 sec	0	
	3	Dial mode	Tone	Pulse	1	OPTION
	4	Pulse \rightarrow Tone change function by \nless key	Enable	Disable	1	
	5	Dial pulse make/break ratio(\%)	40/60	33/67	0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{gathered} \text { SW } \\ 1 \\ \text { B5 } \end{gathered}$	1 2 3 4 5	DTMF signal transmission level (Low)	$\text { No. }=\begin{array}{rrrrr} 16 & 8 & 4 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 0 & 1 \end{array}$		$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	

$\begin{aligned} & \text { SW } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function				Initial setting	Remarks
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { K1 } \end{gathered}$	1	Entering DIAG mode by pressing SPEED key	Yes		No		0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { L1 } \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Cut off mode (COPY mode)	Yes		No		1	OPTION
	6	A4 paper enable	Enable		Disable		1	
	7	LEGAL \& LETTER paper enable	Enable		Disable		0	
	8	2 IN 1 Mode	Yes		No		0	OPTION
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { L2 } \end{gathered}$		Paper set size		LETTER	LEGAL	A4		
	1		No. 1	0	0	1	1	
	2		No. 2	0	1	0	0	
	3	Automatic reduce of receive	Auto		100 \%		1	OPTION
	4	Print contrast	Light		Normal		0	OPTION
	5	Reception reduction ratio in case of memory full	100%		93%		0	OPTION
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { 1 } \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { I } \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Power save mode	No		Yes		0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	

- Soft switch function description

SW-A1 No. 1 Protect from echo

Used to protect from echo in reception.

SW-A1 No. 2 Forced 4800BPS reception

When line conditions warrant that receptions take place at 4800 BPS repeatedly.

It may improve the success of receptions by setting at 4800BPS.
This improve the receiving document quality and reduces handshake time due to fallback during training.

SW-A1 No. 3 Footer print

When set to "1", the date of reception, the sender machine No., and the page No. are automatically recorded at the end of reception.
SW-A1 No. 4 Length limitation of copy/send/receive
Used to set the maximum page length.
To avoid possible paper jam, the page length is normally limited to 1 meter for copy or transmit, and 1.5 meters for receive.
It is possible to set it to "No limit" to transmit a long document, such as a computer print form, etc. (In this case, the receiver must also be set to no limit.)

SW-A1 No. 5 CSI transmission

(CSI TRANSMISSION) is a switch to set whether the machine sends or does not send the signal (CSI signal) informing its own telephone No. to the remote fax. machine when information is received. When "nonsending" is set, the telephone No. is not output on the remote transmitting machine if the remote transmitting machine has the function to display or print the telephone No. of receiving machine, using this CSI signal.
SW-A1 No. 6 DIS receive acknowledgment during G3 transmission Used to make a choice of whether reception of DIS (NSF) is acknowledged after receiving two DISs (NSFs) or receiving one DIS (two NSFs). It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .

SW-A1 No. 7 Non-modulated carrier for V29 transmission modem
Though transmission of a non-modulated carrier is not required for transmission by the V29 modem according to the CCITT recommendation, it may be permitted to a send non-modulated carrier before the image signal to avoid and echo suppression problem. It may be useful for overseas communication to avoid an echo suppression problem, if set to 1.

SW-A1 No. 8 EOL (End Of Line) detect timer

Used to make a choice of whether to use the 25 -second or 13 -second timer for detection of EOL.
This is effective to override communication failures with some facsimile models that have longer EOL detection.

SW-A2 No. 1 ~ No. 4 Modem speed

Used to set determine the initial modem speed. The default is 9600BPS. It may be necessary to program it to a slower speed when frequent line fallback is encountered, in order to save the time required for fallback procedure.

SW-A2 No. 5 Sender's information transmit

(SENDER'S INFORMATION TRANSMISSION) is a switch to set the function to print the content of HEADER PRINT described in the passcode list at the front end of receiver's original when original is sent to the remote machine.
If this switch is set to "NO", the HEADER PRINT is not output at the receiving machine.

SW-A2 No. 6 H2 mode

Used to determine reception of H 2 mode (15 sec transmission mode). When set to OFF, H2 mode reception is inhibited even though the transmitting machine has H 2 mode function.

SW-A2 No. 7 Communication error treatment in RTN sending mode (Reception)

Used to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to "1", communication error is judged as no error.

SW-A2 No. 8 CNG transmission

When set to "0", this model allows CNG transmission by pressing the Start key in the key pad dialing mode. When set to "1", CNG transmission in the key pad dialing mode cannot be performed. In either case. CNG transmission can be performed in the auto dial mode.

SW-A3 No. 1, No. 2 CED tone signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppression switch, causing a communication problem.

Though SW-A3 No. 1 and No. 2 are normally set to 0, it should be changed this time between the CED tone signal to eliminate the communication problem caused by echo.

SW-A3 No. 3 MR Coding
MR Coding is enable.
SW-A3 No. 4 ~ No. 8 Reserved
Set to "0".
SW-A4 No. 1 ~ No. 5 Signal transmission level
Used to control the signal transmission level in the range of-0dB to31dB.

SW-A4 No. 6 Protocol monitor (Error print)

If set to " 1 ", protocol is printed at communication error.

SW-A4 No. 7 Protocol monitor

Normally set to " 0 ". If set to "1", communication can be checked, in case of troubles, without using a G3 tester or other tools.
When communication FSK data transmission or reception is made, the data is taken into the buffer. When communication is finished, the data is analyzed and printed out. When data is received with the line monitor (SW-A4 No. 8) set to " 1 " the reception level is also printed out.

SW-A4 No. 8 Line monitor

Normally set to " 0 ". If set to "1", the transmission speed and the reception level are displayed on the LCD. Used for line tests.
SW-A5 No. 1, No. 2 Digital line equalization setting (Reception)
Line equalization when reception is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 3, No. 4 Reserved

Set to "0".
SW-A5 No. 5, No. 6 Digital cable equalizer setting (Reception for Caller ID)
Line equalization when reception for CALLER ID is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 7 Error criterion

Used to select error criterion for sending back RTN when receiving image data.

SW-A5 No. 8 Anti junk fax check

When use the Anti junk fax function, set to "1".
SW-A6 No. 1 Auto gain control (MODEM)
When this mode is enabled, if the reception signal level is under 31 dBm . The modem itself controls the signal gain automatically.

SW-A6 No. 2 End buzzer

Setting this bit to 0 will disable the end buzzer (including the error buzzer/ on-hook buzzer).
SW-A6 No. 3 Disconnect the line when DIS is received in RX mode Bit1 $=0$: When DIS signal is received during RX mode, the line is disconnected immediately.

Bit1 = 1: When DIS signal is received during RX mode, the line is disconnected on the next tone.

SW-A6 No. 4 Equalizer freeze control (MODEM)
This switch is used to perform reception operation by fixing the equalizer control of modem for the line which is always in an unfavorable state and picture cannot be received.

* Usually, the control is executed according to the state of line where the equalizer setting is changed always.

SW-A6 No. 5 Equalizer freeze control 7200BPS only

Setting which specifies SW-A3 No. 6 control only in the condition of 7200BPS modem speed.

SW-A6 No. 6 CNG transmission in manual TX mode
When set to "1", fax transmit the CNG signal in case of manual transmission mode (User press the START key after waiting the fax answering signal from handset or speaker).
SW-A6 No. 7 Initial compression scheme for sharp fax in TX mode When set to " 0 ", if the other fax is Sharp model, fax transmit the document by H2 mode. When set to "1", even if the other fax is Sharp model, fax transmit the document by MR mode.
SW-A6 No. 8 Reserved
Set to "0".
SW-B1 No. 1 ~ No. 4 Recall interval
Choice is made for a redial interval for speed and rapid dial calls. Used a binary number to program this. If set to 0 accidentally, 1 will be assumed.

SW-B1 No. 5 ~ No. 8 Recall times

Choice is made as to how many redials should be.
SW-B2 No. 1 Dialing pause (sec/pause)
Pauses can be inserted between telephone numbers of direct dial connection. Selection of 4 sec or 2 sec pause is available.

SW-B2 No. 2 ~ No. 4 Reserved

Set to "0".

SW-B2 No. 5 Waiting time after dialing

This is time waiting for the opponent's signals after dialing.
For the Switzerland version, the time is fixed to 90 seconds regardless of this switch setting.

SW-B2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-B3 No. 1 ~ No. 8 Reserved
Set to "0".

SW-B4 No. 1 Auto dial mode Delay timer of before line connect Delay time between the dial key input and line connection under the auto dial mode.

SW-B4 No. 2 Auto dial mode Delay timer of after line connect
Delay time between the line connection and dial data output under the auto dial mode.

SW-B4 No. 3 Dial mode

When using the pulse dial, set to 1 . When using the tone dial, set to 0 .
SW-B4 No. 4 Pulse \rightarrow Tone change function by $\not \approx$ key
When setting to 1 , the mode is changed by pressing the \nless key from the pulse dial mode to the tone dial mode.
SW-B4 No. 5 Dial pulse make/break ratio (\%)
When using the 33% make ratio pulse dial, set to " 0 ".
When using the 40 \% make ratio pulse dial, set to "1".
SW-B4 No. 6 ~ No. 8 Reserved
Set to "0".
SW-B5 No. 1 ~ No. 5 DTMF signal transmission level (Low)
The transmission level of DTMF signal is adjusted. (lower frequency)

$$
\begin{aligned}
& 00000: 0 \mathrm{dBm} \\
& \downarrow \\
& 11111:-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)
\end{aligned}
$$

SW-B5 No. 6 ~ No. 8 Reserved

Set to "0".

SW-B6 No. 1 ~ No. 5 DTMF signal transmission level (High)

The transmission level of DTMF signal is adjusted. (higher frequency)
00000: 0dBm

$$
\downarrow
$$

11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$

SW-B6 No. 6 ~ No. 8 Reserved

Set to "0".

SW-C1 No. 1, No. 2 Reading slice (Binary)

Used to determine the set value of reading density in standard/fine mode. The standard setting is "00" (Factory setting is "00")

SW-C1 No. 3, No. 4 Reading slice (Half tone)

Used to determine the set value of reading density in half tone mode. The standard setting is "00" (Factory setting is "00")

SW-C1 No. 5 Line density selection

Used to set the transmission mode which is automatically selected when the Resolution key is not pressed. In the copy mode, however, the fine mode is automatically selected unless the Resolution key is manually set to another mode.

SW-C1 No. 6 Reserved
Set to "0".

SW-C1 No. 7 MTF correction in half tone mode

This allows selection of MTF correction (dimness correction) in the half tone mode.
When "NO" (=1) is selected, the whole image becomes soft and mild. On the contrary, however, clearness of characters will be reduced. Normally set to "YES" (=0).

SW-C1 No. 8 Reserved
Set to "0".
SW-D1 No. 1 ~ No. 4 Number of rings for auto receive
When the machine is set in the auto receive mode, the number of rings before answering can be selected. It may be set from one to four rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook, it should be programmed to the user's choice. If the soft switch was set to 1 , direct connection is made to the facsimile. If a facsimile calling beep was heard when the handset is taken off the hook, press the START key and put the handset on the hook to have the facsimile start receiving. If it was set to 0 accidentally, receive ring is set to 1 .
NOTE: If the machine is set to answer after a large number of rings, it may not be able to receive faxes successfully. If you have difficulty receiving faxes, reduce the number of rings to a maximum of 6 .

SW-D1 No. 5 Automatic switching manual to auto receive mode

This soft switch is used to select whether the machine should switch to the auto receive mode after 5 rings in the manual receive mode or remain in the same way as SW-D1 No. 1, No. 2, No. 3 and No. 4 " $0 " 1$ " 0 "1"(5 rings).

SW-D1 No. 6 ~ No. 8 Reserved

Set to "0".
SW-D2 No. 1 ~ No. 3 Reserved
Set to "0".

SW-D2 No. 4 Distinctive ringing detection

When set to "1", machine recognize the CI signal FAX ringing or TEL ringing automatically.
SW-D2 No. 5 Caller ID function
Used for Caller ID function.
SW-D2 No. 6, No. 7 Cl off detection timer (Distinctive ring setting off only)
Set the minimum time period of Cl signal interruption which affords to be judged as a CI OFF section.

SW-D2 No. 8 Caller ID detect during Cl off
Detection of caller ID signal is performed as follows:
0 : First CI OFF only
1: All of Cl OFF
SW-E1 No. 1 Tel/Fax Automatic switching mode
Used to set auto TEL/FAX switching mode or to set the normal fax mode.
SW-E1 No. 2, No. 3 Pseudo ringing time at the phone/fax automatic switching mode
Choice is made as to how long to rumble the dummy ringer on TEL/FAX automatic switching mode.
SW-E1 No. 4 Number of CNG signal detection at the phone/fax automatic switching mode
Used for detection of CNG in one tone or two tones in the TEL/FAX automatic switching mode.

SW-E1 No. 5 CNG detect time at TEL/FAX mode

The switch which sets the time from the start of CNG detection to the end of detection.

SW-E1 No. 6 Reserved

Set to "0".

SW-E1 No. 7 Post answer tone transmit in TEL/FAX mode

When set to "0", machine send the 3 tones $(880 \mathrm{~Hz} / 988 \mathrm{~Hz} / 1046 \mathrm{~Hz})$ in TEL/FAX auto changeover mode.

SW-E1 No. 8 Country select for Caller ID
When machine using in Australia, set to "0".
When machine using in New Zealand, set to "1".

SW-E2 No. 1 ~ No. 4 Pseudo ringer sound volume

Used to adjust sound volume of pseudo ringer to the line (ringer back tone) generated on selecting TEL/FAX. Setting is the reduce level from -5 dBm output level.

SW-E2 No. 5 ~ No. 8 Reserved

Set to "0".
SW-F1 No. 1, No. 2 DTMF detect time
Used to set detect time of DTMF (Dual Tone Multi Frequency) used in remote reception $(5 * *)$.
The longer the detect time is, the less the error detection is caused by noises.

SW-F1 No. 3 Protection of remote reception ($5 \star \star$) detect
Used to set the function of remote reception $(5 * *)$. When set to "1", the remote reception function is disabled.
SW-F1 No. 4 Remote reception with GE telephone
(Corresponding to TEL made by GE) P. B. X.
"1": Compatible with TEL mode by GE
"0": Not compatible

- When sending $(5 * *)$ for remote reception with a GE manufactured telephone remote reception may not take place because of special specifications in their DTMF.
To overcome this, a soft SW is provided to change the modem setting to allow for remote reception.
- If this soft SW is set to "1", other telephone sets may be adversely affected.
SW-F1 No. 5 ~ No. 8 Remote operation code figure by external TEL (0 ~ 9)
Remote operation codes can be changes from 0 through 9 . If set to greater than 9, it defaults to 9 . The " $5 \times \neq$ " is not changed.
Ex-7 $* *$ (Default: $5 * *$)

SW-F2 No. 1 CNG detection in STAND-BY mode

When setting to "1", the CNG signal detection function during standby stops.

SW-F2 No. 2, No. 3 Number of CNG detect (AM mode)

Used for detection of CNG in 1 to 4 pulses.
SW-F2 No. 4, No. 5 Number of CNG (STAND-BY mode)
Used for detection of CNG in 1 to 4 pulses.
SW-F2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-G1 No. 1 ~ No. 4 Quiet detect time
When an answering machine is connected, if a no sound state is detected for a certain period of time, the machine judges it as a transmission from a facsimile machine and automatically switches to the FAX mode.

SW-G1 No. 5 ~ No. 8 Quiet detect start timing
Inserts a pause before commencing quiet detection.

SW-G2 No. 1 ~ No. 8 Reserved
Set to "0".
SW-G3 No. 1, No. 2 OGM detect timer
This is used to change the OGM detection time for answering machine hook up detection.

SW-G3 No. 3, No. 4 Reserved
Set to "0".
SW-G3 No. 5, No. 6 Section time of quiet detection
The switch which sets the time from the start of detection function to the end of the function.

SW-G3 No. 7, No. 8 Reserved
Set to "0".
SW-H1 No. 1 Busy tone detection ON/OFF time (Lower duration)
The initial value of detection is set according to electric condition.
The set value is changed according to the local switch board. (Erroneous detection of sound is reduced.)
Normally the upper limit is set to 900 msec , and the lower limit to 200 msec .
If erroneous detection is caused by sound, etc., adjust the detection range.
The lower limit can be set in the range of 350 msec to 200 msec .
SW-H1 No. 2 Busy tone detection ON/OFF time (Upper duration)
Similarly to SW-H1 No. 1, the set value can be varied.
The upper limit can be set in the range of 650 msec to 900 msec .

SW-H1 No. 1	SW-H1 No. 2	Detection range
0	0	$200 \mathrm{msec} \sim 900 \mathrm{msec}$
0	1	$200 \mathrm{msec} \sim 650 \mathrm{msec}$
1	0	$350 \mathrm{msec} \sim 900 \mathrm{msec}$
1	1	$350 \mathrm{msec} \sim 650 \mathrm{msec}$

SW-H1 No. 3 Reserved
Set to "0".
SW-H1 No. 4 Busy tone continuous sound detect time
Set detecting time busy tone for 5 seconds or as is PTT.

SW-H1 No. 5 Reserved

Set to "0".
SW-H1 No. 6 Busy tone detect continuation sound detect (during ICM: for internal A.M.)
Used to select detection of the continuous sound of certain frequency.

SW-H1 No. 7 Reserved

Set to "0".
SW-H1 No. 8 Busy tone detect intermittent sound detect (during ICM: for internal A.M.)
Used to select detection of the intermittent sound of certain frequency.
SW-H2 No. 1, No. 2 Busy tone detection pulse number
Used to set detection of Busy tone intermittent sounds.
SW-H2 No. 3 Fax switching when A.M. full
If the answering machine's memory (tape) is full and there is no response, the machine automatically switches to Fax reception.
SW-H2 No. 4 ~ No. 8 Reserved
Set to "0".
SW-I1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I2 No. 1 ~ No. 8 Reserved
Set to "0".

SW-I3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I4 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I5 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I6 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I7 No. 1 ~ No. 8 Reserved
Set to "0".

SW-J1 No. 1 Activity report print

This soft switch is used to select: whether or not to print out the activity report when the memory is full. An activity report can be printed when the following key entry command is made.
"FUNCTION", "2", "\#", "START"
After producing the activity report, all the data in the memory will be cleared.

When the switch function is set to "0" (no), the data in the memory will be deleted from the oldest as it reaches the maximum memory capacity.

SW-J1 No. 2 Total communication hours and pages print

Used to make a choice of whether the total communication time and pages are recorded in the activity report.

SW-J1 No. 3 Sender's phone number setting

Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to "1", new registration of the sender's phone number is disabled to prevent accidental wrong input.

SW-J1 No. 4 ~ No. 6 Reserved
Set to "0".
SW-J1 No. 7, No. 8 Ringer volume
Used to adjust ringing volume.
SW-J2 No. 1, No. 2 Speaker volume (3 stages)
Used to adjust sound volume from a speaker.

SW-J2 No. 3 Polling key

If this switch is set to 1 , the last of Rapid key works as polling key.
SW-J2 No. 4 ~ No. 8 Reserved
Set to "0".
SW-J3 No. 1 Automatic cover sheet
The machine automatically generates a cover sheet and sends it as the last page of each transmission.

SW-J3 No. 2 ~ No. 4 Communication result printout (Transaction report)
Every communication, the result can be output. As usual, it is set to print the timer sending communication error alone. If No. 2: 0 No. 3: 1 No. 4: 0 are set, printing is always on (printed even if it is normally ended).

000: Error, timer and memory sending/receiving
001: Sending
010: Continuous printing
011: Not printed
100: Communication error
SW-J3 No. 5 ~ No. 8 Reserved
Set to "0".
SW-K1 No. 1 Entering DIAG mode by pressing SPEED key
A bit which is used in the production process only. When the SPEED key is pressed, the switch is changed from the stand-by state to the DIAG mode.

SW-K1 No. 2 ~ No. 8 Reserved

Set to "0".
SW-L1 No. 1 ~ No. 4 Reserved
Set to "0".
SW-L1 No. 5 Cut off mode (COPY mode)
Whether the excessive part is printed on the next recording paper or discarded is selected to copy a document which is longer than the recording paper.

SW-L1 No. 6 A4 Paper enable
The use of recording paper of A4 is enabled.
SW-L1 No. 7 LEGAL and LETTER paper enable
The use of recording paper of LEGAL and LETTER is enabled.
SW-L1 No. 82 IN 1 mode
A function to print transmitted data of two pages on one sheet.

SW-L2 No. 1, No. 2 Paper set size

At present size of the recording paper.
SW-L2 No. 3 Automatic reduce of receive
If set to 1 , it is reduced automatically when receiving.
SW-L2 No. 4 Print contrast
0: Normal
1: Light
SW-L2 No. 5 Reception reduction ratio in case of memory full
This model is designed so that the print is started according to the setting of SW-L2 No. 3 when reception of one page is completed. However, if the memory is filled with data before completion of reception of one page, the print is started with the reduction ratio which is set with this switch.
SW-L2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-M1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-M2 No. 1 ~ No. 4 Reserved
Set to "0".
SW-M2 No. 5 Power save mode
It is the function which controls the consumption electric power of the standing by condition.

SW-M2 No. 6 ~ No. 8 Reserved
Set to "0".

[3] Troubleshooting

Refer to the following actions to troubleshoot any of problems mentioned in 1-4.
[1] A communication error occurs.
[2] Image distortion produced.
[3] Unable to do overseas communication.
[4] Communication speed slow due to FALLBACK

- Increase the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [1] [2] [3].
- Decrease the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [3].
- Apply line equalization SOFT SWITCH A5-1, 2. May be used in case [1] [2] [3] [4].
- Slow down the transmission speed SOFT SWITCH A2-1, 2, 3, 4. May be used in case [2] [3].
- Replace the TEL/LIU PWB. May be used in all cases.
- Replace the control PWB.

May be used in all cases.

* If transmission problems still exist on the machine, use the following format and check the related matters.

[^0]
[4] Error code table

1. Communication error code table

G3 Transmission

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSF, DIS	Cannot recognize DCS signal by echo etc. Cannot recognize NSS signal (FIF code etc)
2	CFR	Disconnects line during reception (carrier missing etc)
3	FTT	Disconnects line by fall back
4	MCF	Disconnects line during reception of multi page Cannot recognize NSS, DCS signal in the case of mode change
5	RTP or PIN	The line is hung up without replying to telephone request from the receiving party.
7	No signal or DCN	Cannot recognize NSS, DCS signal after transmit RTN or RTP signal.
8	-	Owing to error in some page the error could not be corrected although the specified number of error retransmission was at tempted.
11	-	Error occurred after or while reception by the remote (receiving) machine was revealed to be impossible.
12	-	Error occurred just after fallback.
13	Error occurred after a response to retransmission end command was received.	

G3 Reception

Code	Final received signal	
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSS, DCS	Cannot recognize CFR or FTT signal (Receiver side) Disconnects line during transmission (line error)
2	NSC, DTC	Cannot recognize NSS signal (FIF code etc)
3	EOP	Cannot recognize MCF, PIP, PIN, RTN, RTP signal
4	EOM	Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of mode change
5	MPS	The line is hung up without replying to communication request.
6	PR1-Q	Cannot recognize PIP, PIN signal in the case of TALK request
7	No signal or DCN	No response in transmitter (cannot recognize DIS signal) or DCN signal received* (receiver side)
8	-	Error occurred upon completion of reception of all pages.
9	-	Error occurred when mode was changed or Transmission/Reception switching was performed.
10	-	Error occurred during partial page or physical page reception.
11	-	Error occurred after or during inquiry from the remote (transmitting) machine as to whether reception is possible or not.
12	-	Error occurred during or just after fallback.
13		Error occurred after the retransmission end command was received.

CHAPTER 3. MECHANISM BLOCKS

[1] General description

1. Document feed block and diagram

Fig. 1

2. Document feed operation

1) The original, which is set in the document hopper, feeds automatically when the front sensor is activated. This in turn activates the pulse motor which drives the document supply roller. The document stops when the lead edge is detected by the document sensor.
2) The lead edge of the original is fed a specified number of pulses after the lead edge of the document is detected for the reading process to begin.
3) The trailing edge of the original is fed a specific number of pulses after the trailing edge of the document deactivates the document sensor. The read process then stops and the original is discharged.
4) When the front sensor is in the OFF state (any document is not set up in the hopper guide), the drive will be stopped when the document is discharged.

3. Hopper mechanism

3-1. General view

The hopper section contains document guides that are used to adjust the hopper to the width of the original document. This ensures that the original feeds straight into the fax machine for scanning.
Document width: 148 mm to 216 mm (A5 longitudinal size to Letter longitudinal size)
NOTE: Adjust the document guide after setting up the document.

3-2. Automatic document feed

1) Use of the paper feed roller and separation rubber plate ensures er-ror-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separation rubber plate

Fig. 3
3-3. Documents applicable for automatic feed

	4×6 series (788mm x 1091mm x 1000 mm sheets)		Square meter series	
	Minimum	Maximum	Minimum	Maximum
Feeder capacity	10 sheets, max.			
Paper weight	45 kg	64.3 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$74.3 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.09 mm	0.06 mm	0.09 mm
Paper size	$\begin{aligned} & \text { B6 }(128 \mathrm{~mm} \times 182 \mathrm{~mm}) \sim \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}), \text { Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \end{aligned}$			

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.

Documents corresponding to a paper weight heavier than 64.3kg (74.3g/ $\left.\mathrm{m}^{2}\right)$ and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.

Documents heavier than 135kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.
NOTES: 1) Curled edge of documents, if any, must be straighten out.
3) Do not load the documents of different sizes and/or thicknesses together.

Fig. 4

3-5. Documents requiring use of document carrier

1) Documents smaller than $B 6(128 \mathrm{~mm} \times 182 \mathrm{~mm})$.
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curls, especially those whose surface is curled (maximum allowable curl is 5 mm).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carrier.)
6) Documents containing an easily separable writing material (e.g., those written with a lead pencil).
7) Transparent documents.
8) Folded or glued documents.

Document in document carrier should be inserted manually into the feeder.

4. Document release

4-1. General

To correct a jammed document or to clean the document running surface, pull the insertion side of document center of the operation panel. To open the upper document guide, the operation panel must be opened first.

4-2. Cross section view

Fig. 5

5. Recording block

(1) General view

Fig. 6

5-1. Driving

In the drive mechanism, the rotating force of the pulse motor for both transmission and reception is transmitted to the paper supply roller, the recording paper feed roller and imaging film drive gear through the pulse motor axle gear, reduction gear and planetary gear.

5-2. Recording

This equipment employs the thermal transcription system which used the thermal head imaging film.

1) Thermal head

The thermal head is composed of 2,016 heating elements in traverse line, and the resolution power is 8 dots $/ \mathrm{mm}$. The maximum speed is 10 $\mathrm{ms} /$ line.

2) Structure of recording mechanism

Recording is achieved by applying a suitable pressure to the thermal head through the imaging film of the recording paper feed roller and the recording paper.
The main scanning is electronically done, and the sub-scanning is me chanically done (by sending the recording paper with the recording paper feed roller).

3) Recording paper transfer sequence

a) The recording paper stored in the RP hopper is fed with the PU roller, and the recording paper is stopped when the $\mathrm{P}-\mathrm{IN}$ sensor is turned on by sensing its lead edge.
b) Hereafter, the imaging film and recording paper are transferred with the recording paper feed roller, and thermal transcription is done on the recording paper.
c) After thermal transcription, the imaging film is taken up by the roller on the take-up side, and the recording paper is discharged by the PO roller.

As basic, the density unevenness mainly results from the longitudinal misalignment of the thermal head to the heater line. Otherwise, the head is in uneven contact with the recording paper feed roller, or the imaging film is wrinkled.

The following items are described as the simplified checking method.
(1) Are the power and signal cables of the thermal head suitably treated?
(2) Does the same symptom appear even if the thermal head pres-sure spring is replaced?
(3) Is the feed roller of the recording paper concentric? (Density is uneven at intervals.)
(4) Does the same symptom appear even if the thermal head is replaced?
5) Is the imaging film stained or wrinkled?

[2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.

1	Bottom plate	Parts list (Fig. 1)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Mechanism unit	1	4	Head earth cable	1
		2	Screw (3×10)	9	5	Screw (3×6)	1
		3	Screw (3×5)	1	6	Shield sheet	1
					7	Bottom plate	1

Fig. 1
Parts list (Fig. 2)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Mechanism unit	1	7	Screw (4×6)	1
2	Connector	3	8	AC cord ass'y	1
3	Cable	6	9	Screw (3×10)	2
4	Control PWB unit	1	10	Drive unit	1
5	TEL/Liu PWB unit	1	11	Speaker hold spring	1
6	Power supply PWB unit	1	12	Speaker	1

Fig. 2

Parts list (Fig. 3)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Mechanism unit	1	8	Platen lock bracket	1
2	Sheet A	1	9	Platen lock lever, left	1
3	P-IN sensor lever B	1	10	Platen lock lever, right	1
4	PE sensor lever B	1	11	Platen lock lever spring	1
5	PE sensor lever spring B	1	12	PO roller	1
6	Screw (3×10)	1	13	Transfer bearing	2
7	BT gear ass'y	1	14	Back roller gear	1

Fig. 3

Parts list (Fig. 4)

No.	Part name	Q'ty	No.	Part name	Q'ty	No.	Part name	Q'ty
1	Screw (3×10)	2	9	Idler gear, $52 Z$	1	17	Reduction gear, 4	1
2	Motor	1	10	Reduction gear, 3	1	18	Planet gear lever C ass'y	1
3	Motor plate	1	11	Reduction gear, 2	1	19	Planet gear lever B ass'y	1
4	Take up gear	1	12	Reduction gear, 5	1	20	Reduction gear, 1	1
5	Slip gear ass'y	1	13	Reduction gear C	1	21	Cam hold spring	1
6	Reduction gear, 6	1	14	Link lever	1	22	Cam A	1
7	Planet gear lever D ass'y	1	15	Planet gear lever A ass'y	1	23	Cam B	1
8	Idler gear B	1	16	Idler gear, 30Z	3	24	Cam switch	1

Fix position of CAM A and B

(5)

CAUTION: To prevent the hook from breaking

[side angle]
Please do in order in the above figure when you assemble this gear.

When the gear is assembled, it is necessary to see two hooks.

Fig. 4

Parts list (Fig. 5)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Mechanism unit	1	8	CIS unit	1
2	Hook switch lever	1	9	CIS spring	2
3	Sub frame unit	1	10	Cover switch spring	1
4	Screw (3×10)	2	11	Cover switch lever	1
5	Original paper guide unit	1	12	Feed roller shaft	1
6	Operation panel unit	1	13	Feed roller	1
7	Film guide shaft	1	14	Orignal paper guide	1

Fig. 5

Upper cabinet and document guide upper unit

Parts list (Fig. 6)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Screw (3×8)	2	6	Operation panel PWB	1
2	Document guide upper unit	1	7	Direct key	1
			8	Mode key	1
3	Operation panel unit	1	9	Stop key	1
4	Screw (2×6)	5	10	Start key	1
5	Cable	1	11	12 key	1
			12	Upper cabinet	1

8
$(9$
9
(10)
(11)

Fig. 6

Fig. 7

8
Sub frame, top cover unit RP hopper
unit
Parts list (Fig. 8)

No.	Part name	Q'ty	No.	Part name	Q'ty	No.	Part name	Q'ty
1	Top cover unit	1	10	PO pinch roller spring	2	19	Platen bearing, right	1
2	Screw (3×10)	2	11	PO pinch roller	2	20	Platen roller	1
3	Sub frame unit	1	12	PO guide	1	21	PU shaft	1
4	RP hopper unit	1	13	PE sensor lever	1	22	PU roller ass'y	1
5	Sub frame ass'y	1	14	PO gear	1	23	P-IN sensor lever spring	1
6	Screw (3×10)	1	15	PO roller ass'y	1	24	P-IN sensor lever	1
7	Tension gear	1	16	Film guide shaft	1	25	Sub frame	1
8	Tension spring	1	17	Platen gear	1	26	PO roller rubber	2
9	PO guide ass'y	1	18	Platen bearing, left	1	27	PO roller shaft	1

Fig. 8

9	Top cover and RP hopper	Parts list (Fig. 9)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Release knob	1	9	RP release plate	1
		2	Screw	1	10	Rotation plate	1
		3	Pinion gear	1	11	RP pad	1
		4	Hopper spring	1	12	C-spring	1
		5	Hopper guide, right	1	13	Separate plate	1
		6	Hopper guide, left	1	14	Separate plate sheet	1
		7	TC sheet	1	15	Separate spring	1
		8	Top cover	1	16	A4 paper guide	1
					17	RP hopper	1

(1)
(2)
(3)
(4)
(5)
(6)
7
(8)

Note) Hopper guides move smoothly.
Operation load is 450 g range from

Fig. 10

Parts list (Fig. 11)

No.	Part name	Q'ty
1	Screw (3×10)	1
2	Screw (4×6)	1
3	Core (F2064)	1
4	Core (F2063)	1
5	Screw (3×5)	1
6	Core (F2103)	1

Fig. 11

CHAPTER 4. DIAGRAMS

[1] Block diagram

[3] Point- to-point diagram

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description

1. General description

The compact design of the control PWB is obtained by using ROCKWELL fax engine in the main control section and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

2. PWB configuration

Fig. 1

1) Control PWB

The control PWB controls peripheral PWBs, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a 1-chip modem (R96DFXL-CID) which is installed on the control PWB.

2) TEL/LIU PWB

This PWB controls connection of the telephone line to the unit.

3) Power supply PWB

This PWB provides voltages of +5 V and +24 V to the other PWBs.

4) Panel PWB

The panel PWB allows input of the operation keys.

5) LCD PWB

This PWB controls the LCD display.

3. Operational description

Operational descriptions are given below:

- Transmission operation

When a document is loaded in standby mode, the state of the document sensor is sensed via the 1 chip fax engine (FC200M). If the sensor signal was on, the motor is started to bring the document into the standby position. With depression of the START key in the offhook state, transmission takes place.
Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the scan processor, the signal scanned by the CIS is sent to the internal image processor and the AD converter to convert the analog signal into binary data. This binary data is transferred from the scan processor to the image buffer within the RAM and encoded and stored in the transmit buffer of the RAM. The data is then con-verted from parallel to serial form by the modem where the serial data is modulated and sent onto the line.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START key in the off-hook mode in the case of manual receive mode, or Cl signal detection by the LIU in the automatic receive mode.
First, the FC200M controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C, the serial data from the modem is converted to parallel form in the modem interface of the 1 chip fax engine (FC200M) which is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the FC200M which is then converted from parallel to serial form to be sent to the thermal head. The data is printed line by line by the FC200M which is assigned to control the motor rotation and strobe signal.

- Copy operation

To make a copy on this facsimile, the COPY key is pressed when the machine is in stand-by with a document on the document table and the telephone set is in the on-hook state.
First, depression of the COPY key advances the document to the scan line. Similar to the transmitting operation, the image signal from the CIS is converted to a binary signal in the DMA mode via the 1 chip fax engine (FC200M) which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the thermal head which is printed line by line. The copying takes place as the operation is repeated.

[2] Circuit description of control PWB

1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 5 blocks.

Fig. 2 Control PWB functional block diagram

2. Description of each block

(1) Main control block

The main control block is composed of ROCKWELL 1 chip fax engine (FC200M), ROM (2Mbit), SRAM (256Kbit), DRAM (4Mbit) and Modem (R96DFXL-CID).
Devices are connected to the bus to control the whole unit.

1) FC200M (IC9) : pin-144 QFP (FAX CONTROLLER)
2) R96DFXL-CID (IC6) : pin-100 QFP (MODEM)

The FAXENGINE Integrated Facsimile Controllers.
FC200M, contains an internal 8 bit microprocessor with an external 2 Mbyte address space and dedicated circuitry optimized for facsimile image processing and facsimile machine control and monitoring.

FC200M (IC9) Terminal descriptions

Pin Name	Pin No.	I/O	$\begin{aligned} & \text { Input } \\ & \text { Type } \end{aligned}$	Output Type	Pin Description (Note: Active low signals have an " n " pin name ending.)
CPU Control Interface					
MIRQn	135	I	HU	-	Modem interrupt, active low. (Hysteresis In, Internal Pullup.)
SYSCLK	133	1	H	-	System clock. (Hysteresis In.)
TSTCLK	130	0	-	123XT	Test clock.
Bus Control Interface					
A[23:0]	$\begin{gathered} {[1: 6][8: 13]} \\ {[15: 20][22: 27]} \end{gathered}$	0	TU	123XT	Address bus (24-bit).
D[7:0]	$\begin{aligned} & {[136: 139]} \\ & {[141: 144]} \end{aligned}$	I/O	TU	123XT	Data bus (8-bit).
RDn	128	0	-	123XT	Read strobe.
WRn	127	0	-	123XT	Write strobe.
ROMCSn	120	O	-	123XT	ROM chip select.
CS1n	122	0	-	123XT	I/O chip select.
CS0n	57	0	-	123XT	SRAM chip select. (Battery powered.)
MCSn	121	0	-	123XT	Modem chip select.
SYNC	126	0	-	123XT	Indicates CPU op code fetch cycle (active high).
REGDMA	124	0	-	123XT	Indicates REGSEL cycle and DMA cycle.
WAITn	125	0	-	123XT	Indicates current TSTCLK cycle is a wait state or a halt state.
RASn	113	0	-	123XT	DRAM row address select. (Battery powered.)
CAS[1:0]n	[111:112]	\bigcirc	-	123XT	DRAM column address select. (Battery powered.)
DWRn	109	O	-	123XT	DRAM write. (Battery powered.)
Prime Power Reset Logic and Test					
DEBUGn	129	I	HU	-	External non-maskable input (NMI).
RESETn	131	I/O	HU	2 XO	FC100/FC200 Reset.
TEST	58	1	C	-	Sets Test mode (Battery powered).
Battery Power Control and Reset Logic					
XIN	59	I	OSC	-	Crystal oscillator input pin.
XOUT	60	0	-	OSC	Crystal oscillator output pin.
PWRDWNn	62	I	H	-	Used by external system to indicate -to FC100/FC200-loss of prime power. (Results in NMI)
BATRSTn	61	1	H	-	Battery power reset input.
WRPROTn	110	O	-	1XC	(Battery powered.) Write protect during loss of VDD power. NOTE:The functional logic is powered by battery power, but the output drive is powered by DRAM battery power.
Scanner Interface					
START	101	0	-	2XS	Scanner shift gate control.
CLK1	100	0	-	2XS	Scanner clock.
CLK1n	99	0	-	2XS	Scanner clock-inverted.
CLK2	98	0	-	2XS	Scanner reset gate control (or clock for CIS scanner).
FCS1n/VIDCTL0	96	0	-	2XT	Flash memory chip select or Video Control signal.
FCS2n/VIDCTL1	97	0	-	2XT	Flash memory chip select or Video Control signal.
Printer Interface					
PCLK/DMAACK	29	0	-	3XC	Thermal Print Head (TPH) clock, or external DMAACK.
PDAT	30	0	-	2XP	Serial printing data (to TPH).
PLAT	31	0	-	3XP	TPH data latch.
STRB[3:0]	[33:36]	0	-	1XP	Strobe signals for the TPH.
STRBPOL/DMAREQ	37	I	C	-	Sets strobe polarity, active high/low or external DMA request.
Operator Panel Interface					
OPO[0]/GPO[8]/ SMPWRCTRL	47	O	-	2XL	Keyboard/LED strobe [0] or GPO[8] or Scan Motor Power Control
OPO[1]/GPO[9]/ PMPWRCTRL	46	O	-	2XL	Keyboard/LED strobe [1] or GPO[9] or Print Motor Power Control
OPO[2]/GPO[10]/ RINGER	44	O	-	2XCT	Keyboard/LED strobe [2] or GPO[10] or RINGER
OPO[3]/GPO[11]	43	0	-	2XL	Keyboard/LED strobe [3] or GPO[11]
OPO[4]/GPO[12]/ SSTXD1	42	O	-	2XL	Keyboard/LED strobe [4] or GPO[12] or SSTXD1 (for SSIF1)
OPO[5]/GPO[13]	40	0	-	2XL	Keyboard/LED strobe [5] or GPO[13]
OPO[6]/GPO[14]	39	0	-	2XL	Keyboard/LED strobe [6] or GPO[14]
OPO[7]/GPO[15]	38	0	-	2XL	Keyboard/LED strobe [7] or GPO[15]
$\begin{aligned} & \text { OPI[0]/GPIO[21]/ } \\ & \text { SSRXD1 } \end{aligned}$	52	I/O	HU	2XC	(Pullup, Hysteresis In) Keyboard return [0] or GPIO[21] or SSRXD1 (for SSIF1)
OPI[1]/GPIO[22]/ SSSTAT1	51	I/O	HU	2XC	(Pullup, Hysteresis In) Keyboard return [1] or GPIO[22] or SSSTAT1 (for SSIF1)

FC200M (IC9) Terminal descriptions

Pin Name	Pin No.	I/O	Input Type	Output Type	Pin Description
Operator Panel Interface					
$\begin{aligned} & \text { OPI[2]/GPIO[23]/ } \\ & \text { SSCLK1 } \end{aligned}$	50	I/O	HU	2XC	(Pullup, Hysteresis In) Keyboard return [2] or GPIO[23] or SSCLK1 (for SSIF1)
OPI[3]/GPIO[24]	49	I/O	HU	2XC	(Pullup, Hysteresis In) Keyboard return [3] or GPIO[24]
LEDCTL	55	0	-	4XC	Indicates outputs OPO[7:0] are for LEDs.
LCDCS	54	0	-	1XC	LCD chip select.
General Purpose I/O					
GPIO[0]	94	I/O	H	2XC	(Hysteresis In) GPIO[0].
GPIO[1]/SASTXD	93	I/O	H	2XC	(Hysteresis In) GPIO[1] or SASTXD (for SERIF).
GPIO[2]/SASRXD	92	I/O	H	2XC	(Hysteresis In) GPIO[2] or SASRXD (for SERIF).
GPIO[3]/SASCLK	91	I/O	H	2XC	(Hysteresis In) GPIO[3] or SASCLK (for SERIF).
GPIO[4]/CPCIN	90	I/O	H	2XC	(Hysteresis In) GPIO[4] or Calling Party Control Input.
GPIO[5]/SSCLK2	89	I/O	H	2XC	(Hysteresis In) GPIO[5] or SSCLK2 (for SSIF2).
GPIO[6]/SSTXD2	87	I/O	H	2XC	(Hysteresis In) GPIO[6] or SSTXD2 (for SSIF2).
GPIO[7]/SSRXD2	86	I/O	H	2XC	(Hysteresis In) GPIO[7] or SSRXD2 (for SSIF2).
GPIO[8]/FWRn	85	I/O	H	2XC	(Hysteresis In) GPIO[8] or flash write enable signal for NAND-type flash memory.
GPIO[9]/FRDn	84	I/O	H	2XC	(Hysteresis In) GPIO[9] or flash read enable signal for NAND-type flash memory.
GPIO[10]/SSSTAT2	83	I/O	H	2XC	(Hysteresis In) GPIO[10] or SSSTAT2 (for SSIF2).
GPIO[11]/BE/ SERINP	82	I/O	H	1XC	(Hysteresis In) GPIO[11] or bus enable or serial port data input for autobaud detection.
GPIO[12]/CS[2]n	80	I/O	H	2XC	(Hysteresis In) GPIO[12] or I/O chip select [2].
GPIO[13]/CS[3]n	79	I/O	H	2XC	(Hysteresis In) GPIO[13] or I/O chip select [3].
GPIO[14]/CS[4]n	78	I/O	H	2XC	(Hysteresis In) GPIO[14] or I/O chip select [4].
GPIO[15]/CS[5]n	77	I/O	H	2XC	(Hysteresis In) GPIO[15] or I/O chip select [5].
GPIO[16]/IRQ[8]	76	I/O	H	1XC	(Hysteresis In) GPIO[16] or external interrupt 8.
GPIO[17]/IRQ[5]n	75	I/O	H	1XC	(Hysteresis In) GPIO[17] or external interrupt 5.
GPIO[18]/IRQ[9]n	74	I/O	H	1XC	(Hysteresis In) GPIO[18] or external interrupt 9.
GPIO[19]/RDY/ SEROUT	73	I/O	H	1XC	(Hysteresis In) GPIO[19] or ready signal or Serial port data output for autobaud detection.
GPIO[20]/ALTTONE	107	I/O	H	1XC	(Hysteresis In) GPIO[20] or ALTTONE.
Miscellaneous					
SM[3:0]/GPO[7:4]	[103:106]	O	-	1XC	Programmable: scan motor control pins or GPO pins.
PM[3:0]/GPO[3:0]	[115:118]	O	-	1XC	Programmable: print motor control pins or GPO pins.
TONE	119	O	-	1XC	Tone output signal.
Power, Reference Voltages, Ground					
-Vref/CLREF	66	I	-VR	-	Negative Reference Voltage for Video A/D or Reference Voltage for the Clamp Circuit.
ADXG	68	I	VXG	-	A/D Internal GND. (NOTE: This pin requires an external $0.22 \mu \mathrm{~F}$ decoupling capacitor to ADGA.)
ADGA	69		VADG		A/D Analog Ground
ADVA	70		VADV		A/D Analog Power
ADGD	72		VADG		A/D Digital Ground
+Vref	71	I	+VR		Positive Reference Voltage for Video A/D.
VIN	67	I	VA	-	Analog Video A/D input.
THADI	65	1	TA	-	Analog Thermal A/D input.
Power and Ground					
VSS(12)	$\begin{aligned} & 7,21,28,45, \\ & 53,56,64,88, \\ & 95,108,132, \\ & 134 \end{aligned}$				Digital Ground
VDD(8)	$\begin{aligned} & 14,32,41,48, \\ & 81,102,123, \\ & 140 \end{aligned}$				Digital Power
VBAT	63				Battery Power
VDRAM	114				DRAM Battery Power

(2) Panel control block

The following controls are performed by the FC200M.

- Operation panel key scanning
- Operation panel LCD display
(3) Mechanism/recording control block
- Recording control block diagram (1)

Fig. 4

(4) Modem (R96DFXL-CID) block

INTRODUCTION

The Rockwell R96DFXL-CID MONOFAX modem is a synchronous 9600 bits per second (bps) half-duplex modem with error detection and DTMF reception. It has low power consumption and requires only a single +5 V DC power supply. The modem is housed in a single VLSI device package.
The modem can operate over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).
The R96DFXL-CID is designed for use in Group 3 facsimile ma-chines.
The modem satisfies the requirements specified in CCITT recommendations V.29, V. 27 ter, V. 21 Channel 2 and T.4, and meets the binary signaling requirements of T.30.
The modem can operate at 9600, 7200, 4800, 2400, or 300 bps, and also includes the V. 27 ter short training sequence option.
The modem can also perform HDLC framing according to T. 30 at 9600 7200, 4800, 2400, or 300 bps.
The modem features a programmable DTMF receiver and three programmable tone detectors which operate concurrently with the V. 21 channel 2 receiver.
The voice mode allows the host computer to efficiently transmit and receive audio signals and messages.
The modem is available in either a 100-pin plastic quad flat pack (PQFP) or a 64-pin quad in-line package (QUIP).
General purpose input/output (GPIO) pins are available for host as signment in the 100-pin PQFP.
The modem's small size, single voltage supply, and low power consumption allow the design of compact system enclosures for use in both office and home environments.
MONOFAX is a registered trademark of Rockwell International.

FEATURES

- Group 3 facsimile transmission/reception
- ITU-TS V.29, V. 27 ter, T.30, V. 21 Channel 2, T. 4
- HDLC Framing at all speeds
- V. 27 ter short train
- Concurrent DTMF, FSK, and tone reception
- Voice mode transmission/reception
- Half-duplex (2-wire)
- Programmable maximum transmit level:

0 dBm to -15 dBm

- Programmable transmit analog attenuation: 0 dB to 14 dB in 2 dB steps
- Receive dynamic range: 0 dBm to -43 dBm
- Programmable dual tone generation
- Programmable tone detection
- Programmable turn-on and turn-off thresholds
- Programmable interface memory interrupt
- Diagnostic capability
- Allows telephone line quality monitoring
- Equalization
- Automatic adaptive equalizer
- Fixed digital compromise equalizer
- DTE interface: two alternate ports
- Selectable microprocessor bus (6500 or 8085)
- CCITT V. 24 (EIA-232-D compatible) interface
- TTL and CMOS compatible
- Low power consumption: 275 mW (typical)
- Single Package
- 100-pin PQFP
- 64-pin QUIP
- Single +5VDC power supply
- Software compatible with R96MFX, R96EFX, R96SHF, and R96VFX modems

R96DFXL-CID (IC6) Hardware Interface Signals
Pin Signals - 100-Pin PQFP

Pin No.	Signal Name	I/O Type
1	GP03	IA/OB
2	GP04	IA/OB
3	GP05	IA/OB
4	GP06	IA/OB
5	GP07	IA/OB
6	OVD2	GND
7	OVD2	GND
8	D7	IA/OB
9	D6	IA/OB
10	D5	IA/OB
11	D4	IA/OB
12	D3	IA/OB
13	D2	IA/OB
14	D1	IA/OB
15	D0	IA/OB
16	OVD2	GND
17	OVA	GND
18	RAMPIN	R
19	NC	
20	NC	
21	OVA	GND
22	+5VD2	PWR
23	OVD1	GND
24	SWGAINI	R
25	ECLKIN1	R
26	SYNCIN1	R
27	NC	
28	NC	
29	NC	
30	OVA	GND
31	NC	
32	NC	
33	NC	
34	DAIN	R
35	ADOUT	R
36	BYPASS	IC
37	RCVI	R
38	TXLOSS3	IC
39	TXLOSS2	IC
40	TXLOSS1	IC
41	NC	
42	NC	
43	OVA	GND
44	TXOUT	AA
45	RXIN	AB
46	+5VA	PWR
47	OVA	GND
48	AGD	R
49	AOUT	R
50	OVD1	GND
51	NC	
52	$\overline{\mathrm{IRQ}}$	OC
53	WRITE-R/W	IA
54	$\overline{\mathrm{CS}}$	IA
55	READ- ${ }^{2}$	IA
56	RS4	IA
57	RS3	IA
58	RS2	IA
59	RS1	IA

Pin No.	Signal Name	I/O Type
60	RS0	IA
61	GP13	IA/OB
62	NC	
63	GP11	IA/OB
64	RTS	IA
65	EN85	R
66	0VD2	GND
67	PORI	ID
68	XTLI	R
69	XTLO	R
70	XCLK	OD
71	YCLK	OD
72	+5VD1	PWR
73	DCLK1	R
74	SYNCIN2	R
75	GP16	IA/OB
76	GP17	IA/OB
77	OVD2	GND
78	$\overline{\text { CTS }}$	OA
79	TXD	IA
80	OVD2	GND
81	0VD2	GND
82	DCLK	OA
83	EYESYNC	OA
84	EYECLKX	OA
85	EYECLK	OA
86	EYEX	OA
87	ADIN	R
88	DAOUT	R
89	0VD2	GND
90	EYEY	OA
91	GP21	IA/OB
92	0VD2	GND
93	GP20	IA/OB
94	GP19	IA/OB
95	RXD	OA
96	$\overline{\text { RLSD }}$	OA
97	0VD2	GND
98	RCVO	R
99	SWGAINO	R
100	GP02	IA/OB
Notes: 1. $\mathrm{NC}=$ No connection; leave pin disconnected (open). 2. I/O Type: = Digital signals: see Table 9; Analog signals: see Table 10. 3. R = Required modem inter-connection; no connection to host equipment.		

[3] Circuit description of TEL/LIU PWB

(1) TEL/LIU block operational description

Fig. 5

2) Circuit description

The TEL/LIU PWB is composed of the following 10 blocks.

1. Surge protection circuit
2. Noise filter
3. Dial pulse generation circuit
4. CML relay
5. Matching transformer
6. Hybrid circuit
7. Signal selection
8. Sensor circuit
9. Cl detection circuit
10. Power supply and bias circuit

3) Block description

1. Surge Protection circuit

This circuit protects the circuit from the surge voltage occurring on the telephone line.

- The AR1, AR2 protects the circuit from the 425 V or higher line surge voltages.

2. Noise filter

The noise filter comprises the RF choke coil, L6, L7 and L8.

3. Dial pulse generation circuit

The pulse dial generation circuit comprises the photo-coupler PC2, PC3, polarity guard REC1, and resistor R1.

The photo-coupler PC3 shunts the line current using the DP signal before transmitting the dial signal, then turns off the CML relay.

After the pulse dial signal is transmitted by turning on/off the DP signal, the CML relay is turned on again.

4. CML relay

The CML relay switches over connection to the matching transformer T1 while the FAX or built-in telephone is being used.

5. Matching transformer

The matching transformer performs electrical insulation from the telephone line and impedance matching for transmitting the TEL/FAX signal.

6. Hybrid circuit

The hybrid circuit performs 2-wire-to-4-wire conversion using the IC102 of operational amplifier, transmits the voice transmission signal to the line, and feeds back the voice signal to the voice reception circuit as the side tone.

7. Signal selection

The following signals are used to control the transmission line of TEL/ LIU signal. For details, refer to the signal selector matrix table.

8. Sensor circuit

For the recording paper sensor $\overline{(\mathrm{PE})}$, when there is recording paper, the photo transistor in the light receiving side is ON and the detection level is LOW. When there is no recording paper, the photo transistor in the light receiving side is OFF and the detection level is HIGH.

9. Cl detection circuit

The Cl detection circuit detects the Cl signals. A Cl signal, which is provided to the photo-coupler PC6 through the C3 $(0.56 \mu \mathrm{~F})$, R3 (22 K), and ZD2 when the ring signal is inputted from the telephone line.

10. Power supply and bias circuits

The voltages of +5 V and +24 VA are supplied from the control PWB unit.
[Control signals from output port]

Signal Name	Description				
CML (The circuit is located in the TEL/LIU PWB.)	Line connecting relay and DP generating relay H: Line make L: Line break				
SP MUTE	Speaker tone mute control signal H: Muting (Power down mode) L: Muting cancel (Normal operation)				
TEL MUTE	Handset reception mute control signal H: Muting L: Muting cancel				
VOLA VOL B (The circuit is located in the control PWB.)	Speaker volume control signal, VOL A VOL B matrix				
	VOLA	VOL B	RING. Receiving	Buzzer	DTMF
	H	H	-	-	-
	L	H	Low	-	Low
	H	L	Middle	Fixed	Middle
	L	L	High	-	High
TXCONT (The circuit is located in the control PWB.)	Handset transfer mute control signal H : Signal sending, when transmitting L : During reception, transmission mute, (during standby)				
GAIN-C (The circuit is located in the control PWB.)	Reception gain switching signal H: When connected to line, 1: 1 gain L: When not connected to line, HIGH gain				
BZCONT (The circuit is located in the control PWB.)	Speaker output signal switching H: Buzzer signal output (during stand by) L: When monitoring line signal				

[Signals for status recognition according to input signals]

Signal Name	Function
$\overline{\mathrm{RHS}}$	H:The handset is in the on-hook state. L: The handset is in the off-hook state.
Cl	Incoming call (Cl) detection signal
$\overline{\mathrm{HS}}$	$\mathrm{H}:$ The handset or external telephone is in the on-hook state. L: The handset or external telephone is in the off-hook state.
P-E	H:Recording paper does not exist. L: Recording paper is set (exists). (Detection of recording paper in printing state)
P-IN	H:Recording paper does not exist in case of printing. L: Recording paper exists in case of printing. (Detection of recording paper in printing state)

[Other signals]

Signal Name	Function
TEL IN	Receiving signal from line or modem
TEL OUT	Transfer signal to line
TXOUT	Transmission (DTMF) analog signal output from modem
RXIN	Reception (DTMF, others) analog signal input into modem

(Example: TEL speaking)

Fig. 6

[4] Circuit description of power supply PWB

1. Block diagram

Fig. 7

2-1. Noise filter circuit

The input noise filter section is composed of L1, C1 and C15 that reduces normal mode noise from the AC line and common mode noise to the AC line.

2-2. Rectifying/smoothing circuit

The AC input voltage is rectified by diode D1, 2, 3, 4 and smoothed by capacitor C2 to supply DC voltage to switching circuit section.
Power thermistor TH1 suppresses inrush current at power switch-on.

2-3. Switching circuit

This circuit employs the self excited ringing choke convertor (RCC) system. In this system, the DC voltage supplied from the rectifying/smooth ing section is converted to be the high frequency pulses by ON/OFF repetition of MOS FET Q1.

Energy is charged in the primary winding of T1 during ON period of Q1, and discharged to the secondary winding during OFF period of Q1.
The output voltage is controlled by adjusting ON period of Q1 which changes charge time of C8 through operation of photo-coupler PC1 from +24 V output.

[5] Circuit description of CIS unit

1. CIS

Cis is an image sensor which puts the original paper in close contact with the full-size sensor for scanning, being a monochromatic type with the pixel number of 1,728 dots and the main scanning density of 8 dots $/ \mathrm{mm}$.

It is composed of sensor, rod lens, LED light source, light-conductive plate, control circuit and so on, and the reading line and focus are previously adjusted as the unit.
Due to the full-size sensor, the focus distance is so short that the set is changed from the light weight type to the compact type.

The overcurrent protection is performed by bringing Q1 to OFF state through detection of voltage increase in the auxiliary winding of T1 by ZD2, R5 and R6.

The overvoltage protection is performed by operating the overcurrent protection circuit through destruction of zener diode ZD4 and shortcircuiting of load.

2-4. +5V circuit

Each DC voltage supplied by rectifying the output of transformer T1 with diode D8 is stabilized by 3-terminal regulator IC1.

2. Waveforms

The following clock is supplied from FC200M of the control board, and VO is output.

Fig. 8

CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT

Control PWB parts layout (Top side)

Control PWB parts layout (Bottom side)

TEL/LIU PWB parts layout (Top side)

TEL/LIU PWB parts layout (Bottom side)

Power supply PWB parts layout

CHAPTER 7. OPERATION FLOWCHART

[1] Protocol

[2] Power on sequence

CHAPTER 8. OTHERS

[1] Service tools

1. List

NO.	PARTS CODE		DESCRIPTION	Q'TY
PRICE RANK				
1	C P W B S 300 2 S C S 1	Extension board unit (Control PWB)	1	BK
2	C P W B F 3003 S C S 1	Extension board unit (TEL/LIU PWB)	1	BP
3	P S H E Z3 354 S C Z Z	Shading wave memory standard paper	AD	

Extension board unit

TEL/LIU PWB

NO.	PARTS CODE		DESCRIPTION	Q'TY
RRICE				
RANK				

2. Description

2-1. Relay board unit

1. Remove the TEL/LIU PWB, control PWB and Power Supply PWB from this unit, and mount the relay board unit instead.

- Before connecting the wiring to the relay board unit, set the test PWB switches to the fixed position.

2. The setting is as follows.

cording paper sensor (P-E) and the hook switch are operated by OR of the mechanical unit switch and the test PWB switch. When performing installation in the machine unit, set the test PWB switches to the fixed position.

	Mechanical unit	PWB to be tested
	Actual operation with mechanical unit	
Recording paper sensor	ON/OFF operation	OFF (Photo interrupter is interrupted.)
Hook SW	ON/OFF operation	ON-HOOK
	PWB sensor check	
Recording paper sensor	OFF	ON/OFF operation
Hook SW	ON-HOOK	ON/OFF operation

* Recording paper: ON

No recording paper: OFF

NOTE

3. Shading paper

The white and black basis is applied to remember the shading waveform. Be sure to perform this operation when replacing the battery or replacing the control PWB. Execute in the shading mode of DIAG mode.

UX-300 SERIES SHADING WAVE MEMORY STANDARD PAPER (PSHEZ3354SCZZ)

[2] IC signal name

CONTROL PWB UNIT

 IC5: VHiULN2003AN/ (ULN2003ANS)

IC7: VHiTC74HCU04F(TC74HCU04F)

IC3: VHiW24258S7LE (W24258S-70LE)

IC8: VHiPST596CMT1 (PST596CNR)

IC4: VHi27C20012MX (27C020) EP-ROM

(TOP VIEW)			
VPP 1	32 VCC	Pin name	Signal
A16 2	31 PGM	A0~A17	Address input
A15 3	30 A17	E	Chip enable
		$\overline{\text { OE }}$	Output enable
		GND	Ground
A7 5	28 A13	$\overline{\text { PGM }}$	Program
A6 6	27 A8	D0~D7	Data output (Program input)
A5		VCC	+5V power
		VPP	+12.5V power(*)
A4 8	25 A11	Only in the	ogram mode
A3 9	$24 \overline{\mathrm{OE}}$		
A2 10	23 A10		
A1 11	$22 \bar{E}$		
A0 12	21 D7		
D0 13	20 D6		
D1 14	19 D5		
D2 15	18 D4		
ND 16	17 D3		

IC10: VHiNJM2113M-1 (NJM2113M)

IC1: RH-IX2129SCZZ (M514800C-70J)

PIN DESCRIPTION			
PIN	PIN NAME	PIN	PIN NAME
A0~A9	ADDRESS INPUT (LOW/REFRESH A0~A3 COLUMN A0~A3)	$\overline{\text { CAS }}$	COLUMN ADDRESS STROBE
		WE	READ/WRITE INPUT
1/00~//07	DATA I/O	OE	OUTPUT ENABLE
RAS	LOW ADDRESS STROBE	VCC	POWER (+5V)
		VSS	CONNECTION

BLOCK DIAGRAM

8-8

SHARP PARTS GUIDE

model FO-780

CONTENTS

1 Cabinet, etc.

2 Top cover and sub frame

3 Upper cabinet

4 Document guide upper

5 Drive unit

6 Packing material \& Accessories

7 Control PWB unit

8 TEL-Liu PWB unit

9 Power supply PWB unit

- Index

Because parts marked with " 1 " is indispensable for the machine safety maintenance and operation, it must be replaced with the parts specifi to the product specification.
[1] Cabinet, etc.

[2] Top cover and sub frame

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
[2] Top cover and sub frame					
1	GCOVA2403XHSA	AL	N	C	Top cover
2	JKNBP2091XHZZ	AC	N	C	Release knob
3	MSPRC2832XHZZ	AC		C	Hopper spring
4	NGERP2318XHZZ	AD		C	Pinion gear
5	PGIDM2533XHSA	AD	N	C	Hopper guide, left
6	PGIDM2534XHSA	AD	N	C	Hopper guide,right
7	MSPRD3065XHFJ	AB	N	C	PO pinch roller spring
8	NROLP2332XHZZ	AD		C	PO pinch roller
9	PGIDM2537XHZZ	AF	N	C	PO guide
10	CROLR2407XH01	AN	N	C	PU roller ass'y
11	NROLR2408XHZZ	AD	N	C	PO roller
12	PGUMR2160XHZZ	AE	N	C	PO roller rubber
13	LBSHP2104XHZZ	AC	N	C	Platen bearing,left
14	LBSHP2105XHZZ	AC	N	C	Platen bearing,right
15	LFRM-2199XHZZ	AK	N	C	Sub frame
16	MLEVP2291XHZZ	AD	N	C	PE sensor lever
17	MLEVP2293XHZZ	AD	N	C	P-IN sensor lever
18	MSPRC3064XHFJ	AC	N	C	Tension spring
19	NGERH2441XHZZ	AC	N	C	PO gear
20	NGERH2442XHZZ	AC	N	C	Platen gear
21	NGERH2460XHZZ	AC	N	C	Tension gear
22	NROLR2409XHZZ	AW	N	C	Platen roller
23	NSFTM2311XHZZ	AG	N	C	Film guide shaft
24	NSFTP2304XHZZ	AD	N	C	PU shaft
25	LPLTP2997XHZZ	AD	N	C	Separate plate
26	LPLTP2998XHZZ	AF	N	C	Rotation plate
27	LPLTP3001XHSA	AH	N	C	RP release plate
28	MSPRC3062XHFJ	AB	N	C	Separate spring
29	MSPRC3063XHFJ	AC	N	C	C-spring
30	PSEL-2015SCZZ	AB		C	RP pad
31	PSHEZ3293XHZZ	AH	N	C	Separate plate sheet
32	PSHEZ3431XHZZ	AC	N	C	TC sheet
33	PHOP-2101XHSA	AK	N	C	RP hopper
34	MSPRD3105XHFJ	AC	N	C	P-IN sensor lever spring
35	PGIDM2535XHSA	AC	N	C	A4 paper guide
B2	XEBSD30P10000	AA		C	Screw(3x10)
B6	LX-BZ2138XHZZ	AB		C	Screw
\square					

[3] Upper cabinet

[4] Document guide upper

[5] Drive unit

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \\ & \hline \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION
[5] Drive unit					
1	CGERH2459XH01	AM	N	C	Slip gear ass'y
2	CLEVP2298XH01	AC	N	C	Planet gear lever A ass'y
6	CLEVP2299XH01	AC	N	C	Planet gear lever B ass'y
7	CLEVP2300XH01	AC	N	C	Planet gear lever C ass'y
9	CLEVP2303XH01	AC	N	C	Planet gear lever D ass'y
11	LFRM-2200XHZZ	AB	N	C	Drive unit frame
12	LPLTM2994XHFW	AE	N	C	Motor plate
13	MCAMP2025XHZZ	AB	N	C	Cam A
14	MCAMP2026XHZZ	AB	N	C	Cam B
15	MLEVP2301XHZZ	AB	N	C	Link lever
16	MSPRD3070XHFJ	AB	N	C	Cam hold spring
17	NGERH2280XHZZ	AC		C	Idler gear B
18	NGERH2311XHZZ	AD		C	Reduction gear C
19	NGERH2446XHZZ	AB	N	C	Reduction gear, 1
20	NGERH2447XHZZ	AB	N	C	Reduction gear, 2
21	NGERH2448XHZZ	AB	N	C	Reduction gear,3
22	NGERH2449XHZZ	AB	N	C	Reduction gear,4
23	NGERH2450XHZZ	AB	N	C	Reduction gear,5
24	NGERH2451XHZZ	AB	N	C	Idler gear,30Z
25	NGERH2452XHZZ	AB	N	C	Idler gear,52Z
26	NGERH2454XHZZ	AB	N	C	Take up gear
27	NGERH2461XHZZ	AB	N	C	Reduction gear,6
28	QCNW-4933XHZZ	AC	N	C	Cam switch cable
29	QSW-F2224SCZZ	AE		B	Cam switch
30	RMOTZ2145XHZZ	BA	N	B	Motor
B2	XEBSD30P10000	AA		C	Screw(3x10)

[6] Packing material \& Accessories

| NO. | PARTS CODE | PRICE
 RANK | MARK | PART | RANK |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad DESCRIPTION

[6] Packing material \& Accessories

1	SPAKC064BXHZZ	AM	N	D	Packing case
2	TLABM4981XHZZ	AB	N	D	Box label
3	TINSE3988XHZZ	AB	N	D	Operation manual
4	TLABH4811XHZZ	AD	N	D	Rapid key labels
5	CPLTP3002XHB1	AK	N	E	Imaging film cartridge and label ass'y
6	TLABH4752XHZZ	AB	N	D	Film set label
7	LPLTP3003XHSA	AH	N	C	Paper tray extension
8	PHOP-2102XHZZ	AE	N	C	Original document support
9	SPAKA490AXHZZ	AC	N	D	Pad B
10	SPAKA489AXHZZ	AC	N	D	Pad A
11	SPAKA481AXHZZ	AF	N	D	Packing add.,right
12	SPAKA480AXHZZ	AF	N	D	Packing add.,left
13	QCNWG0376AFZZ	AM		C	Telephone line cord
14	QCNW-3976XHOW	AK		C	Handset cord
15	NGERH2455XHZZ	AD	N	C	Imaging film gear A
16	NGERH2456XHZZ	AC	N	C	Imaging film gear B
17	TLABM213AXHZZ	AB	N	D	Pop label
18	SPAKP3385SCZZ	AG		D	Vinyl cover
19	DUNTK425BXHWH	AQ	N	E	Handset
21	TLABV4995XHZZ	AB	N	D	Bar cord label
22	TCADZ2264XHZZ	AD		D	Installation card
23	QCNWG0381AFZZ	AM		C	New Zealand cable
24	QPLGZ9065AFZZ	AP		C	Australia plug
25	PRBNN2015SCZZ	AQ	N	S	Imaging film(Initial starter film 10m)

| NO. | PARTS CODE | PRICE
 RANK | NEW
 MARK | PART |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RANK | | | | |\quad DESCRIPTION

[7] Control PWB unit

1	UBATL2049SCZZ	AF	B	Battery(CR2032T23)	[BAT1]
2	VCEAGA1EW476M	AA	C	Capacitor(25WV 47 $\mu \mathrm{F}$)	[C1]
3	VCEAGA1HW105M	AB	C	Capacitor(50WV 1 $\mu \mathrm{F}$)	[C2]
4	VCEAGA1EW476M	AA	C	Capacitor(25WV 47 μ F)	[C3]
5	VCEAGA1HW106M	AA	C	Capacitor(50WV 10¢F)	[C4]
6	VCEAGA1HW106M	AA	C	Capacitor(50WV 10¢F)	[C5]
7	VCEAGA1HW226M	AB	C	Capacitor(50WV $22 \mu \mathrm{~F}$)	[C6]
8	VCEAGA1HW107M	AA	C	Capacitor(50WV 100 ${ }^{\text {F }}$)	[C7]
9	VCEAGA1EW476M	AA	C	Capacitor(25WV 47 $\mu \mathrm{F}$)	[8]
10	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C100]
11	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C103]
12	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C104]
13	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	[C105]
14	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C106]
15	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C107]
16	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C109]
17	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C110]
18	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C111]
19	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C112]
20	VCCCTV1HH150J	AA	C	Capacitor(50WV 15PF)	C113]
21	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C115]
22	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C116]
23	VCCCTV1HH150J	AA	C	Capacitor(50WV 15PF)	C117]
24	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C118]
25	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C120]
26	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C121]
27	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	C122]
28	VCCCTV1HH180J	AA	C	Capacitor(50WV 18PF)	C123]
29	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C124]
30	VCKYTV1HB103K	AB	C	Capacitor(50WV 0.01 $\mu \mathrm{F}$)	C125]
31	VCCSTV1HL391J	AA	C	Capacitor(50WV 390PF)	C126]
32	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C128]
33	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C129]
34	VCCCTV1HH150J	AA	C	Capacitor(50WV 15PF)	C130]
35	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C131]
36	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	[C132]
37	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C133]
38	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C134]
39	VCKYTV1EB104K	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C135]
40	VCKYTV1CF105Z	AB	C	Capacitor(16WV $1 \mu \mathrm{~F}$)	C136]
41	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C137]
42	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C138]
43	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C140]
44	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C141]
45	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C142]
46	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C143]
47	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C144]
48	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C145]
49	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C146]
50	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	C147]
51	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C148]
52	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C149]
53	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C150]
54	VCKYTV1CF105Z	$A B$	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C151]
55	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C152]
56	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C153]
57	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C154]
58	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	C155]
59	VCKYTV1EB104K	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C156]
60	VCKYTV1HB221K	AA	C	Capacitor(50WV 220PF)	[C157]
61	VCKYTV1HB472K	AA	C	Capacitor(50WV 4700PF)	C158]
62	VCKYTV1HB103K	AB	C	Capacitor(50WV 0.01 $\mu \mathrm{F}$)	[C159]
63	VCKYTV1EB104K	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C160]
64	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C161]
65	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C162]
66	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C163]
67	VCKYTV1CF105Z	AB	C	Capacitor(16WV $1 \mu \mathrm{~F}$)	[C164]
68	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C165]
69	VCKYTV1HB222K	AA	C	Capacitor(50WV 2200PF)	[C166]
70	VCCCTV1HH220J	AA	C	Capacitor(50WV 22PF)	[C167]
71	VCKYTV1CF105Z	AB	C	Capacitor(16WV $1 \mu \mathrm{~F}$)	[C168]
72	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C169]
73	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C170]
74	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C171]
75	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C172]
76	VCCCTV1HH680J	AA	C	Capacitor(50WV 68PF)	[C173]
77	VCKYTV1CF105Z	AB	C	Capacitor(16WV $1 \mu \mathrm{~F}$)	[C174]
78	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	[C175]
79	VCKYTV1EF104Z	AA	C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C176]
80	VCKYTV1CF105Z	AB	C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C177]

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION	
[7] Control PWB unit						
81	VCKYTV1CF105Z	AB		C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C178]
82	VCKYTV1CF105Z	AB		C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C179]
83	VCCSTV1HL102J	AA		C	Capacitor(50WV 1000PF)	[C180]
84	VCKYTV1HB681K	AA		C	Capacitor(50WV 680PF)	C181]
85	VCKYTV1CF105Z	AB		C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C182]
86	VCCSTV1HL102J	AA		C	Capacitor(50WV 1000PF)	[C183]
87	VCKYTQ1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)	[C184]
88	VCKYTV1CF105Z	AB		C	Capacitor(16WV 1 $\mu \mathrm{F}$)	[C185]
89	VCCCTV1HH220J	AA		C	Capacitor(50WV 22PF)	C186]
90	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C187]
91	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C188]
92	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C189]
93	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C190]
94	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C191]
95	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C192]
96	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C193]
97	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[C194]
98	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C195]
99	VCKYTV1EB104K	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C196]
100	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C197]
101	VCKYTV1CF105Z	AB		C	Capacitor(16WV 1 $\mu \mathrm{F}$)	C198]
102	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	[199]
103	VCKYTQ1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)	[C200]
104	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[201]
105	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C203]
106	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C204]
107	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	[205]
108	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C206]
109	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C207]
110	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C208]
111	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C209]
112	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	[C210]
113	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C211]
114	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C212]
115	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C213]
116	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C214]
117	VCCCTV1HH680J	AA		C	Capacitor(50WV 68PF)	C215]
118	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[216]
119	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C217]
120	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	C218]
121	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C223]
122	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	[224]
123	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C225]
124	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	[C226]
125	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C227]
126	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C228]
127	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C229]
128	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C230]
129	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)	C231]
130	VCCCTV1HH101J	AA		C	Capacitor(50WV 100PF)	C233]
131	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[235]
132	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)	[C236]
133	QCNCM7014SC0G	AB		C	Connector(7pin)	[CNCIS]
134	QCNCM2442SC0B	AB		C	Conector(2pin)	[CNCSW]
135	QCNCM2575SC1D	AC	N	C	Connector(14pin)	[CNLIUA]
136	QCNCM2575SC0F	AE	N	C	Connector(6pin)	[CNLIUB]
137	QCNCM7014SC0F	AB		C	Connector(6pin)	[CNMT]
138	QCNCM7014SC1E	AC		C	Connector(15pin)	[CNPN]
139	QCNCM2575SC0I	AF	N	C	Connector(9pin)	[CNPW]
140	QCNCM2401SC0B	AA		C	Connector(2pin)	[CNSP]
141	QCNCM7014SC1F	AD		C	Connector(16pin)	[CNTH]
142	VHEMPZP4748A1	AA		B	Diode(1N4748A)	[D2]
143	VHDRB705D//-1	AD		B	Diode(RB705D)	[D102]
144	VHD1SS355//-1	AB		B	Diode(1SS355)	[D104]
145	VHD1SS355//-1	AB		B	Diode(1SS355)	[D105]
146	VHVICPS07//-1	AA		B	IC protector(ICP-S07)	[FU100]
147	RH-IX2129SCZZ	AY		B	IC(M514800C-70J)	[IC1]
148	VHIW24258S7LE	AQ	N	B	IC(W24258S-70LE)	[IC3]
149	QSOCZ2051SC32	AC		C	IC socket(32pin)	[IC4]
	VHI27020FMU0D	BN	N	B	IC,EPROM(2MB)	[IC4]
151	VHIULN2003AN/	AE		B	IC(ULN2003ANS)	[IC5]
152	VHIR96CIDFC2M	BN	N	B	IC(R96DFXL-CID)(Within IC6 and IC9 pair)	[IC6]
153	VHITC74HCU04F	AE	N	B	IC(HCU04)	[IC7]
154	VHIPST596CMT1	AF		B	IC(PST596CNR)	[IC8]
155	VHIR96CIDFC2M	BN	N	B	IC(FC200M)(Within IC6 and IC9 pair)	[IC9]
156	VHINJM2113M-1	AG		B	IC(NJM2113M)	[IC10]
157	VHIHCF4053M1T	AG		B	IC(HCF4053B)	[IC11]
158	VHINJM2902M-1	AF		B	IC(NJM2902M)	[IC12]
159	VRS-TS2AD121J	AA		C	Resistor(1/10W $120 \Omega \pm 5 \%$)	L100]
160	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[L101]

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART	RANK	DESCRIPTION

[7] Control PWB unit

161	RCILZ2145XHZZ	AF	C	Coil(Z2145)	[L102]
162	RCILZ2145XHZZ	AF	C	Coil(Z2145)	[L103]
163	RCILZ2104SCZZ	AK	C	Coil(Z2104)	[L104]
164	RCILZ2145XHZZ	AF	C	Coil(Z2145)	[L105]
165	RCILZ2145XHZZ	AF	C	Coil(Z2145)	L106]
166	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[L107]
167	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[L108]
168	VHPSG206S//-1	AG	B	Photo transistor(SG206S)	[P11]
169	VS2SA1037KS-1	AB	B	Transistor(2SA1037KS)	[Q101]
170	VSRNC1402//-1	AC	B	Transistor(RNC1402)	[Q104]
171	VSRNC1402//-1	AC	B	Transistor(RNC1402)	[Q105]
172	VSDTD114EK/-1	AC	B	Transistor(DTD114EK)	Q109]
173	VS2SA1037KS-1	AB	B	Transistor(2SA1037KS)	[Q111]
174	VRS-TS2AD103J	AA	C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R100]
175	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R102]
176	VRS-TS2AD512J	AA	C	Resistor(1/10W 5.1K $2 \pm 5 \%$)	[R103]
177	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[R104]
178	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R105]
179	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[R106]
180	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	R109]
181	VRS-TS2AD223J	AA	C	Resistor(1/10W $22 \mathrm{~K} \Omega \pm 5 \%$)	[R110]
182	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R111]
183	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R112]
184	VRS-TS2AD103J	AA	C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R113]
185	VRS-TS2AD393J	AA	C	Resistor(1/10W $39 \mathrm{~K} \Omega \pm 5 \%$)	[R114]
186	VRS-TS2AD393J	AA	C	Resistor(1/10W 39K $\Omega \pm 5 \%$)	[R115]
187	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R117]
188	VRS-TS2AD104J	AA	C	Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$)	[R118]
189	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	R119]
190	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R120]
191	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R121]
192	VRS-TS2AD105J	AA	C	Resistor(1/10W 1.0M $\Omega \pm 5 \%$)	[R122]
193	VRS-TS2AD201J	AG	C	Resistor(1/10W $200 \Omega \pm 5 \%$)	[R125]
194	VRS-TS2AD121J	AA	C	Resistor(1/10W $120 \Omega \pm 5 \%$)	R126]
195	VRS-TS2AD333J	AA	C	Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$)	[R127]
196	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R128]
197	VRS-TS2AD151J	AA	C	Resistor(1/10W $150 \Omega \pm 5 \%$)	R129]
198	VRS-TS2AD151J	AA	C	Resistor(1/10W $150 \Omega \pm 5 \%$)	[R130]
199	VRS-TS2AD680J	AA	C	Resistor(1/10W $68 \Omega \pm 5 \%$)	[R131]
200	VRS-TS2AD103J	AA	C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R132]
201	VRS-TS2AD151J	AA	C	Resistor(1/10W $150 \Omega \pm 5 \%$)	[R133]
202	VRS-TS2AD562J	AA	C	Resistor(1/10W 5.6K \pm ¢ $\%$)	[R134]
203	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R136]
204	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[R137]
205	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	[R138]
206	VRSTS2AD4752F	AA	C	Resistor(1/10W 47.5K $2 \pm 1 \%$)	[R139]
207	VRS-TS2AD000J	AA	C	Resistor(1/10W $0 \Omega \pm 5 \%$)	[R140]
208	VCKYTV1HB102K	AA	C	Capacitor(50WV 1000PF)	[R141]
209	VRS-TS2AD151J	AA	C	Resistor(1/10W $150 \Omega \pm 5 \%$)	[R142]
210	VRS-TS2AD471J	AA	C	Resistor(1/10W $470 \Omega \pm 5 \%$)	[R143]
211	VRS-TS2AD151J	AA	C	Resistor(1/10W $150 \Omega \pm 5 \%$)	[R144]
212	VRS-TS2AD101J	AA	C	Resistor(1/10W $100 \Omega \pm 5 \%$)	[R145]
213	VRS-TS2AD101J	AA	C	Resistor(1/10W $100 \Omega \pm 5 \%$)	[R146]
214	VRS-TS2AD471J	AA	C	Resistor(1/10W $470 \Omega \pm 5 \%$)	[R147]
215	VRS-TS2AD103J	AA	C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R148]
216	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R149]
217	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R151]
218	VRS-TS2AD271J	AA	C	Resistor(1/10W $270 \Omega \pm 5 \%$)	[R152]
219	VRS-TS2AD102J	AA	C	Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R153]
220	VRS-TS2AD223J	AA	C	Resistor(1/10W $22 \mathrm{~K} \Omega \pm 5 \%$)	[R154]
221	VRS-TS2AD3R0J	AA	C	Resistor(1/10W $3.0 \Omega \pm 5 \%$)	[R155]
222	VRS-TS2AD332J	AA	C	Resistor(1/10W 3.3K $2 \pm 5 \%$)	[R156]
223	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R157]
224	VRS-TS2AD471J	AA	C	Resistor(1/10W $470 \Omega \pm 5 \%$)	[R158]
225	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R159]
226	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R160]
227	VRS-TS2AD471J	AA	C	Resistor(1/10W $470 \Omega \pm 5 \%$)	[R161]
228	VRS-TS2AD103J	AA	C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R162]
229	VRS-TS2AD101J	AA	C	Resistor(1/10W $100 \Omega \pm 5 \%$)	[R163]
230	VRS-TS2AD203J	AA	C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)	[R164]
231	VRS-TS2AD474J	AA	C	Resistor(1/10W $470 \mathrm{~K} \Omega \pm 5 \%$)	[R165]
232	VRS-TS2AD104J	AA	C	Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$)	[R166]
233	VRS-TS2AD303J	AA	C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)	[R167]
234	VRS-TS2AD102J	AA	C	Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R168]
235	VRS-TS2AD471J	AA	C	Resistor(1/10W $470 \Omega \pm 5 \%$)	[R169]
236	VRS-TS2AD302J	AA	C	Resistor(1/10W $3 \mathrm{~K} \Omega \pm 5 \%$)	[R170]
237	VRS-TS2AD104J	AA	C	Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$)	[R171]
238	VRS-TS2AD224J	AA	C	Resistor(1/10W $220 \mathrm{~K} \Omega \pm 5 \%$)	[R172]
239	VRS-TS2AD203J	AA	C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)	[R173]
240	VRS-TS2AD102J	AA	C	Resistor(1/10W 1K $£ \pm 5 \%$)	[R174]

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$		DESCRIPTION	
[7] Control PWB unit							
241	VRS-TS2AD203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R175]
242	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R176]
243	VRS-TS2AD473J	AA		C	Resistor(1/10W $47 \mathrm{~K} \Omega \pm 5 \%$)		[R177]
244	VRS-TS2AD333J	AA		C	Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$)		[R180]
245	VRS-TS2AD333J	AA		C	Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$)		[R181]
246	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R182]
247	VRS-TS2AD471J	AA		C	Resistor(1/10W $470 \Omega \pm 5 \%$)		[R183]
248	VRS-TS2AD471J	AA		C	Resistor(1/10W $470 \Omega \pm 5 \%$)		[R184]
249	VRS-TS2AD471J	AA		C	Resistor(1/10W $470 \Omega \pm 5 \%$)		[R185]
250	VRS-TS2AD303J	AA		C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)		[R186]
251	VRS-TS2AD303J	AA		C	Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$)		[R187]
252	VRS-TS2AD101J	AA		C	Resistor(1/10W $100 \Omega \pm 5 \%$)		[R188]
253	VRS-TS2AD103J	AA		C	Resistor(1/10W 10K $2 \pm 5 \%$)		[R189]
254	VRS-TS2AD101J	AA		C	Resistor(1/10W $100 \Omega \pm 5 \%$)		[R190]
255	VRS-TS2AD101J	AA		C	Resistor(1/10W $100 \Omega \pm 5 \%$)		[R191]
256	VRS-TS2AD102J	AA		C	Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R192]
257	VRS-TS2AD102J	AA		C	Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%)$		[R194]
258	VRSTS2AD1183F	AA		C	Resistor(1/10W $118 \mathrm{~K} \Omega \pm 1 \%)$		[R195]
259	VRS-TS2AD152J	AA		C	Resistor(1/10W 1.5K $2 \pm 5 \%$)		[R196]
260	VRS-TS2AD102J	AA		C	Resistor(1/10W 1K		[R197]
261	VRS-TS2AD473J	AA		C	Resistor(1/10W 47K $\Omega \pm 5 \%$)		[R198]
262	VRSTS2AD1742F	AA		C	Resistor(1/10W 17.4K $2 \pm 1 \%$)		[R199]
263	VRS-TS2AD133J	AA		C	Resistor(1/10W $13 \mathrm{~K} \Omega \pm 5 \%$)		[R200]
264	VRS-TS2AD103J	AA		C	Resistor(1/10W 10K $\Omega \pm 5 \%$)		[R201]
265	VRSTS2AD8662F	AA		C	Resistor(1/10W $86.6 \mathrm{~K} \Omega \pm 1 \%$)		[R203]
266	VRS-TS2AD512J	AA		C	Resistor(1/10W 5.1K $2 \pm 5 \%$)		[R207]
267	VRS-TS2AD203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R208]
268	VRS-TS2AD333J	AA		C	Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$)		[R209]
269	VRS-TS2AD224J	AA		C	Resistor(1/10W $220 \mathrm{~K} \Omega \pm 5 \%$)		[R210]
270	VRS-TS2AD106J	AA		C	Resistor(1/10W $10 \mathrm{M} \Omega \pm 5 \%$)		[R211]
271	VRS-TS2AD121J	AA		C	Resistor(1/10W $120 \Omega \pm 5 \%$)		[R212]
272	VRS-TS2AD392J	AA		C	Resistor(1/10W $3.9 \mathrm{~K} \Omega \pm 5 \%$)		[R213]
273	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R214]
274	VRS-TS2AD203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R215]
275	VRS-TS2AD203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R216]
276	VRSTS2AD8662F	AA		C	Resistor(1/10W $86.6 \mathrm{~K} \Omega \pm 1 \%)$		[R217]
277	VRS-TS2AD332J	AA		C	Resistor(1/10W $3.3 \mathrm{~K} \Omega \pm 5 \%$)		[R218]
278	VRS-TS2AD103J	AA		C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)		[R219]
279	VRS-TS2AD302J	AA		C	Resistor(1/10W $3 \mathrm{~K} \Omega \pm 5 \%$)		[R220]
280	VRS-TS2AD221J	AA		C	Resistor(1/10W $220 \Omega \pm 5 \%$)		[R221]
281	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R224]
282	VRS-TS2AD303J	AA		C	Resistor(1/10W 30K $2 \pm 5 \%$)		[R225]
283	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R228]
284	VRS-TS2AD101J	AA		C	Resistor(1/10W $100 \Omega \pm 5 \%$)		[R229]
285	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R230]
286	VRS-TS2AD271J	AA		C	Resistor(1/10W $270 \Omega \pm 5 \%$)		[R231]
287	VRS-TS2AD103J	AA		C	Resistor(1/10W 10K $2 \pm 5 \%$)		[R232]
288	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA1]
289	RR-TZ3018SCZZ	AC	N	C	Block resistor(470 2×4)		[RA2]
290	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA3]
291	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA4]
292	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA5]
293	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA6]
294	RR-TZ3018SCZZ	AC	N	C	Block resistor(470 2×4)		[RA7]
295	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA8]
296	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA9]
297	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA10]
298	RR-TZ3017SCZZ	AC	N	C	Block resistor(270 2×4)		[RA11]
299	RR-TZ3012SCJ0	AB	N	C	Block resistor(100 2×4)		[RA12]
300	RR-TZ3018SCZZ	AC	N	C	Block resistor(470 \times 4)		[RA13]
301	RR-TZ3012SCJ0	AB	N	C	Block resistor(100 \times 4)		[RA14]
302	RRLYD3130SCZZ	AN		B	Relay		[RY1]
303	QSW-M2259XHZZ	AF		B	Cover switch		[SW1]
304	RCRSQ1005LCZZ	AE		B	Crystal(19.66MHz)		[X1]
305	RCRSB2122SCZZ	AH		B	Crystal(24.00014MHz)		[X2]
306	RCRSB0297AFZZ	AD		B	Crystal(32.768kHz)		[X3]
307	TLABP3078SCZZ	AA		D	Shading label(for EP-ROM)		
	(Unit)						
901	DCEKC681LXHZZ	BU	N	E	Control PWB unit(Within ROM)		
[8] TEL-Liu PWB unit							
1	VHVRA501PV6-1	AE		B	Varistor(RA-501P-V6-2)		[AR1]
2	VHVRA501PV6-1	AE		B	Varistor(RA-501P-V6-2)		[AR2]
3	VCEAGA1HW475M	AA		C	Capacitor(50WV 4.7 ${ }^{\text {F }}$)		[C1]
4	RC-FZ2020SCZZ	AE		C	Capacitor(250WV 1 $\mu \mathrm{F}$)		[C2]
5	RC-FZ3028SCZZ	AG		C	Capacitor(250WV 0.56 ${ }^{\text {F }}$)		[C3]

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK		DESCRIPTION	
[8] TEL-Liu PWB unit							
6	VCQYNA1HM334K	AD		C	Capacitor(50WV 0.33 ${ }^{\text {F }}$)		[C4]
7	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 $\mu \mathrm{F}$)		[C5]
8	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 ${ }^{\text {F }}$)		[C6]
9	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 HF)		[C7]
10	VCEAGA1EW107M	AB		C	Capacitor(25WV 100 ${ }^{\text {F }}$)		[C8]
11	VCEAGA1HW225M	AA		C	Capacitor(50WV 2.2 $\mu \mathrm{F}$)		[C9]
12	VCEAGA1EW476M	AA		C	Capacitor(25WV 46 FF)		[C10]
13	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 μ F)		[C11]
14	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 μ F)		[C12]
15	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 $\mu \mathrm{F}$)		[C13]
16	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 F)		[C14]
17	VCEAGA1HW475M	AA		C	Capacitor(50WV 4.7 $\mu \mathrm{F}$)		[C15]
18	VCKYTQ1HB473K	AA		C	Capacitor(50WV 0.047 $\mu \mathrm{F}$)		[C103]
19	VCKYTV1HB472K	AA		C	Capacitor(50WV 4700PF)		[C104]
20	VCKYTV1HB222K	AA		C	Capacitor(50WV 2200PF)		[C105]
21	VCKYTV1HB222K	AA		C	Capacitor(50WV 2200PF)		[C106]
22	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)		[C107]
23	VCKYTV1HB221K	AA		C	Capacitor(50WV 220PF)		[C110]
24	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C112]
25	VCKYTV1EB104K	AA		C			C113]
26	VCKYTV1EB104K	AA		C	Capacitor(25WV 0.1 μ)		[C114]
27	VCKYTV1HB222K	AA		C	Capacitor(50WV 2200PF)		[C115]
28	VCKYTQ1HB104K	AB		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C116]
29	VCKYTQ1HB104K	AB		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C117]
30	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)		[C118]
31	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)		[C119]
32	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)		[C120]
33	VCKYTV1HB102K	AA		C	Capacitor(50WV 1000PF)		[C121]
34	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C122]
35	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C125]
36	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C126]
37	VCKYTV1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C127]
38	VCKYTV1HB561K	AA		C	Capacitor(50WV 560PF)		[C128]
39	VCKYTQ1HB683K	AB		C	Capacitor(50WV 0.068 ${ }^{\text {F }}$)		[C130]
40	VCKYTV1EB104K	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		C131]
41	VRS-TP2BD000J	AA		C	Resistor(1/8W $0 \Omega \pm 5 \%)$		[C132]
42	RRLYZ3427SCZZ	AN		B	Relay		[CML]
43	QJAKZ2070SC0D	AF		C	Jack		[CNHJ]
44	QCNCW2509SC1D	AF	N	C	Connector(14pin)		[CNLIUA]
45	QCNCW2509SC0F	AD	N	C	Connector(6pin)		[CNLIUB]
46	QJAKZ2069SCDB	AG	N	C	Jack		[CNLNJ]
47	VHDDSS131//-1	AA		B	Diode(1SS131)		[D1]
48	VHDDSS131//-1	AA		B	Diode(1SS131)		[D3]
49	VHDDSS133//-1	AA		B	Diode(1SS133)		[D4]
50	VHDDSS133/-1	AA		B	Diode(1SS133)		[D5]
51	VHINJM2904M-2	AG		B	IC(NJM2904M)		[IC101]
52	VHINJM2904M-2	AG		B	IC(NJM2904M)		[IC102]
53	VHINJM2904M-2	AG		B	IC(NJM2904M)		[IC103]
54	VRS-TP2BD000J	AA		C	Resistor(1/8W $0 \Omega \pm 5 \%)$		[JP103]
55	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[JP104]
56	VRS-TP2BD000J	AA		C	Resistor(1/8W $0 \Omega \pm 5 \%$)		[JP105]
57	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[JP106]
58	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%)$		[JP107]
59	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[JP108]
60	RFILN2027XHZZ	AC		C	Coil(R-5C)		[L6]
61	RFILN2027XHZZ	AC		C	Coil(R-5C)		[L7]
62	RFILN2027XHZZ	AC		C	Coil(R-5C)		[L8]
63	VHPTLP521-1BL	AE		B	Photo coupler(TLP521)		[PC2]
64	VHPTLP627//-1	AH		B	Photo coupler(TLP627)		[PC3]
65	VHPTLP521-1BL	AE		B	Photo coupler(TLP521)		[PC6]
66	VHPSG206S//-1	AG		B	Photo transistor(SG206S)		[PE]
67	VHPSG206S//-1	AG		B	Photo transistor(SG206S)		[PIN]
68	VSBS108////-1	AE		B	FET(BS108)		[Q1]
69	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q102]
70	VS2SC2412KR-1	AD		B	Transistor(2SC2412K)		[Q103]
71	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q106]
72	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q107]
73	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q108]
74	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q109]
75	RCILZ2120SCZZ	AD		C	Coil $(4.7 \mathrm{mH})$		[R1]
76	VRD-HT2HY223J	AA		C	Resistor(1/2W $22 \mathrm{~K} \Omega \pm 5 \%$)		[R3]
77	VRS-TS2AD433J	AA		C	Resistor(1/10W 43K $2 \pm 5 \%$)		[R102]
78	VRS-TS2AD301J	AA		C	Resistor(1/10W $300 \Omega \pm 5 \%$)		[R103]
79	VRS-TP2BD150J	AA		C	Resistor(1/8W $15 \Omega \pm 5 \%$)		[R107]
80	VRS-TS2AD133J	AA		C	Resistor(1/10W $13 \mathrm{~K} \Omega \pm 5 \%$)		[R108]
81	VRS-TP2BD150J	AA		C	Resistor(1/8W $15 \Omega \pm 5 \%$)		[R109]
82	VRS-TS2AD103J	AA		C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)		[R119]
83	VRS-TS2AD103J	AA		C	Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$)		[R120]
84	VRS-TS2AD102J	AA		C	Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R121]
85	VRS-TS2AD203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R122]

$\square 1$ n dex

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	PART RANK
[C]				
CCNW-202AXH01	1-9	AB	N	C
CGERH2444XHY1	1-10	AF	N	C
CGERH2459XH01	5-1	AM	N	C
CLEVP2298XH01	5-2	AC	N	C
CLEVP2299XH01	5-6	AC	N	C
CLEVP2300XH01	5-7	AC	N	C
CLEVP2303XH01	5-9	AC	N	C
CPLTP3002XHB1	6-5	AK	N	E
CROLR2407XH01	2-10	AN	N	C
[D]				
DCEKC681LXHZZ	1-44	BU	N	E
	7-901	BU	N	E
DCEKL457BXH05	1-45	BD	N	E
	8-901	BD	N	E
DCEKP440BXH23	1-1	BG	N	E
"	3-901	BG	N	E
DCEKP450BXH02	3-7	BD	N	E
DUNTK425BXHWH	6-19	AQ	N	E
[G]				
GCABA2324XHZF	3-1	AM	N	D
GCABB2325XHSE	1-14	AZ	N	D
GCOVA2403XHSA	2-1	AL	N	C
GLEGG2063XHZZ	1-86	AC		C
[H]				
HPNLH2389XHST	1-85	BC	N	D
[J]				
JBTN-2242XHSA	3-2	AG	N	C
JBTN-2244XHSA	3-4	AD	N	C
JBTN-2245XHSA	3-5	AD	N	C
JBTN-2246XHSA	3-6	AD	N	C
JBTN-2252XHSA	3-3	AE	N	C
JKNBP2091XHZZ	2-2	AC	N	C
LANGF2817XHFW	1-15	AF	N	C
LBSHP2088AXZZ	1-16	AC		C
LBSHP2104XHZZ	2-13	AC	N	C
LBSHP2105XHZZ	2-14	AC	N	C
LFRM-2198XHZZ	1-31	AK	N	C
LFRM-2199XHZZ	2-15	AK	N	C
LFRM-2200XHZZ	5-11	AB	N	C
LPLTG2911XHZZ	4-1	AE		C
LPLTM2994XHFW	5-12	AE	N	C
LPLTM2995XHFW	1-46	AS	N	C
LPLTP2908XHZZ	4-2	AE		C
LPLTP2997XHZZ	2-25	AD	N	C
LPLTP2998XHZZ	2-26	AF	N	C
LPLTP3001XHSA	2-27	AH	N	C
LPLTP3003XHSA	6-7	AH	N	C
LX-BZ2138XHZZ	2-B6	AB		C
[M]				
MCAMP2025XHZZ	5-13	AB	N	C
MCAMP2026XHZZ	5-14	AB	N	C
MLEVP2290XHZZ	1-17	AC	N	C
MLEVP2291XHZZ	2-16	AD	N	C
MLEVP2292XHZZ	1-18	AD	N	C
MLEVP2293XHZZ	2-17	AD	N	C
MLEVP2294XHZZ	1-19	AD	N	C
MLEVP2295XHZZ	1-20	AD	N	C
MLEVP2296XHZZ	1-21	AD	N	C
MLEVP2297XHZZ	1-4	AC	N	C
MLEVP2301XHZZ	5-15	AB	N	C
MLEVP2302XHZZ	1-84	AC	N	C
MSPRC2832XHZZ	2-3	AC		C
MSPRC3057XHFJ	1-47	AC	N	C
MSPRC3059XHFJ	1-33	AC	N	C
MSPRC3061XHFJ	1-35	AB	N	C
MSPRC3062XHFJ	2-28	AB	N	C
MSPRC3063XHFJ	2-29	AC	N	C
MSPRC3064XHFJ	2-18	AC	N	C
MSPRC3071XHFJ	4-4	AB	N	C
MSPRC3102XHFJ	1-34	AC	N	C
MSPRC3103XHFJ	1-32	AC	N	C
MSPRD3065XHFJ	2-7	AB	N	C
MSPRD3070XHFJ	5-16	AB	N	C
MSPRD3073XHFJ	1-23	AB	N	C
MSPRD3082XHFJ	1-22	AC	N	C
MSPRD3104XHFJ	1-92	AC	N	C
MSPRD3105XHFJ	2-34	AC	N	C
MSPRP3054XHFJ	1-24	AD	N	C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
MSPRP3055XHFJ	1-25	AD	N	C
MSPRP3079XHFJ	4-5	AE	N	C
MSPRT2951XHZZ	4-6	AC		C
MSPRT3069XHFJ	1-5	AB	N	C
[N]				
NBRGP2141XHZZ	4-7	AH		C
NGERH2280XHZZ	5-17	AC		C
NGERH2311XHZZ	5-18	AD		C
NGERH2441XHZZ	2-19	AC	N	C
NGERH2442XHZZ	2-20	AC	N	C
NGERH2445XHZZ	1-26	AB	N	C
"	4-8	AB	N	C
NGERH2446XHZZ	5-19	AB	N	C
NGERH2447XHZZ	5-20	AB	N	C
NGERH2448XHZZ	5-21	AB	N	C
NGERH2449XHZZ	5-22	AB	N	C
NGERH2450XHZZ	5-23	AB	N	C
NGERH2451XHZZ	5-24	AB	N	C
NGERH2452XHZZ	5-25	AB	N	C
NGERH2454XHZZ	5-26	AB	N	C
NGERH2455XHZZ	6-15	AD	N	C
NGERH2456XHZZ	6-16	AC	N	C
NGERH2460XHZZ	2-21	AC	N	C
NGERH2461XHZZ	5-27	AB	N	C
NGERP2318XHZZ	2-4	AD		C
NROLP2332XHZZ	2-8	AD		C
NROLP2334XHZA	4-9	AC		C
NROLP2406XHZZ	4-10	AD	N	C
NROLR2375XHZZ	1-6	AL		C
NROLR2408XHZZ	2-11	AD	N	C
NROLR2409XHZZ	2-22	AW	N	C
NROLR2410XHZZ	1-27	AP	N	C
NROLR2411XHZZ	4-11	AV	N	C
NSFTM2311XHZZ	1-28	AG	N	C
	2-23	AG	N	C
NSFTP2302XHZZ	1-7	AD	N	C
NSFTP2304XHZZ	2-24	AD	N	C
NSFTZ2257XHZZ	4-12	AG		C
[P]				
PCOVP2122XHZZ	1-48	AK	N	C
PCUSS2120XHZZ	1-89	AB	N	C
PGIDM2529XHZZ	1-40	AD	N	C
PGIDM2530XHZZ	1-41	AD	N	C
PGIDM2531XHZZ	1-36	AD	N	C
PGIDM2532XHZZ	1-37	AD	N	C
PGIDM2533XHSA	2-5	AD	N	C
PGIDM2534XHSA	2-6	AD	N	C
PGIDM2535XHSA	2-35	AC	N	C
PGIDM2536XHZZ	4-13	AK	N	C
PGIDM2537XHZZ	2-9	AF	N	C
PGIDM2538XHZZ	1-8	AM	N	C
PGUMR2160XHZZ	2-12	AE	N	C
PHOP-2101XHSA	2-33	AK	N	C
PHOP-2102XHZZ	6-8	AE	N	C
PRBNN2015SCZZ	6-25	AQ	N	S
PSEL-2015SCZZ	2-30	AB		C
PSHEZ3293XHZZ	2-31	AH	N	C
PSHEZ3410XHZZ	1-87	AB	N	C
PSHEZ3425XHZZ	1-97	AL	N	C
PSHEZ3428XHZZ	1-29	AE	N	C
PSHEZ3429XHZZ	1-90	AD	N	C
PSHEZ3431XHZZ	2-32	AC	N	C
PSHEZ3432XHZZ	1-95	AE	N	C
PSHEZ3436XHZZ	1-96	AC	N	C
[Q]				
QACCL762AXHZZ	1-49	AY		B
QCNCM2401SC0B	7-140	AA		C
QCNCM2442SC0B	7-134	AB		C
QCNCM2575SC0F	7-136	AE	N	C
QCNCM2575SC0I	7-139	AF	N	C
QCNCM2575SC1D	7-135	AC	N	C
QCNCM7014SC0F	7-137	AB		C
QCNCM7014SC0G	7-133	AB		C
QCNCM7014SC1E	7-138	AC		C
QCNCM7014SC1F	7-141	AD		C
QCNCW2509SC0F	8-45	AD	N	C
QCNCW2509SC1D	8-44	AF	N	C
QCNW-3976XHOW	6-14	AK		C
QCNW-4850XHZZ	1-42	AG	N	C
QCNW-4933XHZZ	5-28	AC	N	C

PARTS CODE	No.	PRICE RANK	NEW MARK	PART RANK
QCNW-4935XHZZ	1-2	AN	N	C
"	3-8	AN	N	C
QCNW-4936XHZZ	1-38	AN	N	C
QCNW-4971XHZZ	1-50	AD	N	C
QCNWG0376AFZZ	6-13	AM		C
QCNWG0381AFZZ	6-23	AM		C
QJAKZ2069SCDB	8-46	AG	N	C
QJAKZ2070SC0D	8-43	AF		C
QPLGZ9065AFZZ	6-24	AP		C
QSOCZ2051SC32	7-149	AC		C
QSW-F2224SCZZ	5-29	AE		B
QSW-M2259XHZZ	7-303	AF		B
QSW-Z2263XHZZ	8-120	AG		B
[R]				
RC-FZ2020SCZZ	8-4	AE		C
RC-FZ3028SCZZ	8-5	AG		C
RCILZ2104SCZZ	7-163	AK		C
RCILZ2120SCZZ	8-75	AD		C
RCILZ2145XHZZ	7-161	AF		C
"	7-162	AF		C
"	7-164	AF		C
"	7-165	AF		C
RCORF2063XHZZ	1-3	AF		B
RCORF2064XHZZ	1-51	AF		B
RCORF2103XHZZ	1-98	AF		B
RCRSB0297AFZZ	7-306	AD		B
RCRSB2122SCZZ	7-305	AH		B
RCRSQ1005LCZZ	7-304	AE		B
RDENT2137XHZZ	1-88	BL	N	E
"	9-901	BL	N	E
RFILN2027XHZZ	8-60	AC		C
"	8-61	AC		C
"	8-62	AC		C
RH-DX2007SCZZ	8-119	AC		B
RH-IX2129SCZZ	7-147	AY		B
RHEDZ2058XHZZ	1-39	BR	N	B
RMOTZ2145XHZZ	5-30	BA	N	B
RR-TZ3012SCJ0	7-299	AB	N	C
	7-301	AB	N	C
RR-TZ3017SCZZ	7-288	AC	N	C
"	7-290	AC	N	C
"	7-291	AC	N	C
"	7-292	AC	N	C
"	7-293	AC	N	C
"	7-295	AC	N	C
"	7-296	AC	N	C
"	7-297	AC	N	C
"	7-298	AC	N	C
RR-TZ3018SCZZ	7-289	AC	N	C
	7-294	AC	N	C
"	7-300	AC	N	C
RRLYD3130SCZZ	7-302	AN		B
RRLYZ3427SCZZ	8-42	AN		B
RTRNI2142XHZZ	8-121	AR		B
RUNTZ2037XHZZ	1-43	BL	N	B
[S]				
SPAKA480AXHZZ	6-12	AF	N	D
SPAKA481AXHZZ	6-11	AF	N	D
SPAKA489AXHZZ	6-10	AC	N	D
SPAKA490AXHZZ	6-9	AC	N	D
SPAKC064BXHZZ	6-1	AM	N	D
SPAKP3385SCZZ	6-18	AG		D
[7]				
TCADZ2264XHZZ	6-22	AD		D
TINSE3988XHZZ	6-3	AB	N	D
TLABH4752XHZZ	6-6	AB	N	D
TLABH4811XHZZ	6-4	AD	N	D
TLABM213AXHZZ	6-17	AB	N	D
TLABM4981XHZZ	6-2	AB	N	D
TLABP3078SCZZ	7-307	AA		D
TLABS4335XHZZ	1-99	AD		D
TLABS4969XHZZ	1-100	AV	N	D
TLABV4995XHZZ	6-21	AB	N	D
TLABZ3418XHZZ	1-101	AA		D
[U]				
UBATL2049SCZZ	7-1	AF		B
[V]				
VCCCTV1HH101J	7-92	AA		C
	7-93	AA		C
"	7-96	AA		C

PARTS CODE	No.		NEW	$\begin{array}{\|l\|l\|} \hline \text { PARTI } \\ \hline \end{array}$
VCCCTV1HH101J	7-98	AA		C
	7-100	AA		C
"	7-102	AA		C
	7-123	AA		C
	7-124	AA		C
	7-125	AA		C
	7-126	AA		C
	7-130	AA		C
VCCCTV1HH150J	7-20	AA		C
	7-23	AA		C
	7-34	AA		C
VCCCTV1HH180J	7-28	AA		C
VCCCTV1HH220J	7-70	AA		C
	7-89	AA		C
VCCCTV1HH680J	7-21	AA		C
	7-22	AA		C
	7-32	AA		C
	7-37	AA		C
	7-38	AA		C
	7-47	AA		C
	7-50	AA		C
"	7-51	AA		C
	7-57	AA		C
	7-73	AA		C
"	7-74	AA		C
	7-75	AA		C
	7-76	AA		C
	7-90	AA		C
	7-91	AA		C
"	7-94	AA		C
"	7-95	AA		C
"	7-105	AA		C
	7-115	AA		C
	7-116	AA		C
	7-117	AA		C
VCCSTV1HL102J	7-83	AA		C
	7-86	AA		C
VCCSTV1HL391J	7-31	AA		C
VCEAGA1EW107M	8-10	AB		C
VCEAGA1EW476M	7-2	AA		C
	7-4	AA		C
	7-9	AA		C
	8-12	AA		C
	8-14	AA		C
" ${ }^{\prime \prime}$	8-16	AA		C
VCEAGA1HW105M	7-3	AB		C
VCEAGA1HW106M	7-5	AA		C
	7-6	AA		C
	8-7	AA		C
	8-8	AA		C
"	8-9	AA		C
"	8-15	AA		C
VCEAGA1HW107M	7-8	AA		C
VCEAGA1HW225M	8-11	AA		C
VCEAGA1HW226M	7-7	AB		C
	8-13	AB		C
VCEAGA1HW475M	8-3	AA		C
	8-17	AA		C
VCKYTQ1HB104K	8-28	AB		C
	8-29	AB		C
VCKYTQ1HB473K	8-18	AA		C
VCKYTQ1HB683K	8-39	AB		C
VCKYTQ1HF104Z	7-87	AA		C
	7-103	AA		C
VCKYTV1CF105Z	7-10	AB		C
	7-24	AB		C
"	7-29	AB		C
	7-35	AB		C
"	7-40	AB		C
	7-41	AB		C
"	7-46	AB		C
"	7-48	AB		C
	7-53	AB		C
	7-54	AB		C
"	7-55	AB		C
"	7-56	AB		C
	7-64	AB		C
	7-66	AB		C
	7-67	AB		C
	7-68	AB		C

PARTS CODE	No.	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK
VCKYTV1CF105Z	7-71	AB		C
"	7-72	AB		C
"	7-77	AB		C
"	7-80	AB		C
"	7-81	AB		C
"	7-82	AB		C
"	7-85	AB		C
"	7-88	AB		C
"	7-101	AB		C
VCKYTV1EB104K	7-39	AA		C
"	7-59	AA		C
"	7-63	AA		C
"	7-99	AA		C
"	8-25	AA		C
"	8-26	AA		C
"	8-40	AA		C
VCKYTV1EF104Z	7-11	AA		C
	7-15	AA		C
"	7-16	AA		C
"	7-25	AA		C
"	7-45	AA		C
"	7-52	AA		C
"	7-65	AA		C
"	7-79	AA		C
"	7-104	AA		C
"	7-118	AA		C
"	7-119	AA		C
"	7-120	AA		C
"	7-131	AA		C
"	7-132	AA		C
"	8-24	AA		C
"	8-34	AA		C
"	8-35	AA		C
"	8-36	AA		C
"	8-37	AA		C
VCKYTV1HB102K	7-13	AA		C
"	7-33	AA		C
"	7-42	AA		C
"	7-43	AA		C
"	7-44	AA		C
"	7-49	AA		C
"	7-58	AA		C
"	7-78	AA		C
"	7-106	AA		C
"	7-107	AA		C
"	7-108	AA		C
"	7-109	AA		C
"	7-110	AA		C
"	7-111	AA		C
"	7-112	AA		C
"	7-113	AA		C
"	7-114	AA		C
"	7-121	AA		C
"	7-122	AA		C
"	7-127	AA		C
"	7-128	AA		C
"	7-129	AA		C
"	7-205	AA		C
"	7-208	AA		C
"	8-22	AA		C
"	8-30	AA		C
"	8-31	AA		C
"	8-32	AA		C
"	8-33	AA		C
VCKYTV1HB103K	7-30	AB		C
	7-62	AB		C
VCKYTV1HB221K	7-60	AA		C
"	8-23	AA		C
VCKYTV1HB222K	7-12	AA		C
"	7-14	AA		C
"	7-17	AA		C
"	7-18	AA		C
"	7-19	AA		C
"	7-26	AA		C
"	7-27	AA		C
"	7-36	AA		C
"	7-69	AA		C
"	8-20	AA		C
"	8-21	AA		C
"	8-27	AA		C

PARTS CODE	No.	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK
VCKYTV1HB472K	7-61	AA		C
"	8-19	AA		C
VCKYTV1HB561K	8-38	AA		C
VCKYTV1HB681K	7-84	AA		C
VCQYNA1HM334K	8-6	AD		C
VHDDSS131/-1	8-47	AA		B
"	8-48	AA		B
VHDDSS133//-1	8-49	AA		B
	8-50	AA		B
VHDRB705D//-1	7-143	AD		B
VHD1SS355//-1	7-144	AB		B
"	7-145	AB		B
VHEHZ2A1///-1	8-126	AC		B
"	8-127	AC		B
"	8-128	AC		B
"	8-129	AC		B
VHEMPZP4748A1	7-142	AA		B
VHEMTZJ2R4B-1	8-130	AB		B
	8-131	AB		B
VHEMTZJ200B-1	8-123	AC		B
VHEMTZJ300B-1	8-125	AA		B
VHEMTZJ6R8B-1	8-124	AC		B
VHIHCF4053M1T	7-157	AG		B
VHINJM2113M-1	7-156	AG		B
VHINJM2902M-1	7-158	AF		B
VHINJM2904M-2	8-51	AG		B
"	8-52	AG		B
"	8-53	AG		B
VHIPST596CMT1	7-154	AF		B
VHIR96CIDFC2M	7-152	BN	N	B
"	7-155	BN	N	B
VHITC74HCU04F	7-153	AE	N	B
VHIULN2003AN/	7-151	AE		B
VHIW24258S7LE	7-148	AQ	N	B
VHI27020FMU0D	7-149	BN	N	B
VHPSG206S//-1	7-168	AG		B
"	8-66	AG		B
	8-67	AG		B
VHPTLP521-1BL	8-63	AE		B
"	8-65	AE		B
VHPTLP627//-1	8-64	AH		B
VHVICPS07/I-1	7-146	AA		B
VHVRA501PV6-1	8-1	AE		B
	8-2	AE		B
VHVTN07G181-1	8-122	AC		B
VRD-HT2HY223J	8-76	AA		C
VRS-TP2BD000J	8-41	AA		C
	8-54	AA		C
"	8-56	AA		C
VRS-TP2BD150J	8-79	AA		C
"	8-81	AA		C
VRS-TS2AD000J	7-97	AA		C
"	7-160	AA		C
"	7-166	AA		C
"	7-167	AA		C
"	7-177	AA		C
"	7-179	AA		C
"	7-180	AA		C
"	7-204	AA		C
"	7-207	AA		C
"	7-242	AA		C
"	7-246	AA		C
"	7-273	AA		C
"	7-281	AA		C
"	7-283	AA		C
"	7-285	AA		C
"	8-55	AA		C
"	8-57	AA		C
"	8-58	AA		C
"	8-59	AA		C
"	8-88	AA		C
"	8-105	AA		C
"	8-113	AA		C
VRS-TS2AD100J	8-99	AA		C
"	8-118	AA		C
VRS-TS2AD101J	7-212	AA		C
"	7-213	AA		C
"	7-229	AA		C
"	7-252	AA		C
"	7-254	AA		C

PARTS CODE	No.	PRICE RANK	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$	PART RANK
VRS-TS2AD101J	7-255	AA		C
"	7-284	AA		C
"	8-107	AA		C
VRS-TS2AD102J	7-219	AA		C
"	7-234	AA		C
"	7-240	AA		C
"	7-256	AA		C
"	7-257	AA		C
"	7-260	AA		C
"	8-84	AA		C
"	8-108	AA		C
VRS-TS2AD103J	7-174	AA		C
"	7-184	AA		C
"	7-200	AA		C
"	7-215	AA		C
"	7-228	AA		C
"	7-253	AA		C
"	7-264	AA		C
"	7-278	AA		C
"	7-287	AA		C
"	8-82	AA		C
"	8-83	AA		C
VRS-TS2AD104J	7-188	AA		C
"	7-232	AA		C
"	7-237	AA		C
"	8-98	AA		C
VRS-TS2AD105J	7-192	AA		C
VRS-TS2AD106J	7-270	AA		C
VRS-TS2AD121J	7-159	AA		C
"	7-194	AA		C
"	7-271	AA		C
VRS-TS2AD131J	8-89	AA		C
VRS-TS2AD133J	7-263	AA		C
	8-80	AA		C
VRS-TS2AD151J	7-197	AA		C
"	7-198	AA		C
"	7-201	AA		C
"	7-209	AA		C
	7-211	AA		C
"	8-93	AA		C
VRS-TS2AD152J	7-259	AA		C
"	8-96	AA		C
VRS-TS2AD153J	8-114	AA		C
VRS-TS2AD162J	8-97	AA		C
VRS-TS2AD201J	7-193	AG		C
VRS-TS2AD203J	7-230	AA		C
"	7-239	AA		C
"	7-241	AA		C
"	7-267	AA		C
"	7-274	AA		C
"	7-275	AA		C
"	8-85	AA		C
"	8-90	AA		C
"	8-94	AA		C
VRS-TS2AD221J	7-280	AA		C
VRS-TS2AD222J	8-110	AA		C
VRS-TS2AD223J	7-181	AA		C
"	7-220	AA		C
"	8-101	AA		C
"	8-102	AA		C
"	8-103	AA		C
VRS-TS2AD224J	7-238	AA		C
	7-269	AA		C
VRS-TS2AD243J	8-116	AA		C
VRS-TS2AD271J	7-175	AA		C
"	7-178	AA		C
"	7-182	AA		C
"	7-183	AA		C
"	7-190	AA		C
"	7-191	AA		C
"	7-196	AA		C
"	7-203	AA		C
"	7-217	AA		C
"	7-218	AA		C
"	7-286	AA		C
VRS-TS2AD3R0J	7-221	AA		C
VRS-TS2AD301J	8-78	AA		C
VRS-TS2AD302J	7-236	AA		C
	7-279	AA		C
VRS-TS2AD303J	7-187	AA		C

PARTS CODE	No.	$\begin{aligned} & \left\|\begin{array}{l} \text { PRICE } \\ \text { RANK } \end{array}\right\| \end{aligned}$	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$	PART RANK
VRS-TS2AD303J	7-189	AA		C
"	7-216	AA		C
"	7-223	AA		C
"	7-225	AA		C
"	7-226	AA		C
"	7-233	AA		C
"	7-250	AA		C
"	7-251	AA		C
"	7-282	AA		C
"	8-106	AA		C
"	8-112	AA		C
VRS-TS2AD332J	7-222	AA		C
"	7-277	AA		C
"	8-115	AA		C
VRS-TS2AD333J	7-195	AA		C
"	7-244	AA		C
"	7-245	AA		C
"	7-268	AA		C
VRS-TS2AD392J	7-272	AA		C
VRS-TS2AD393J	7-185	AA		C
"	7-186	AA		C
VRS-TS2AD433J	8-77	AA		C
VRS-TS2AD471J	7-210	AA		C
"	7-214	AA		C
"	7-224	AA		C
"	7-227	AA		C
"	7-235	AA		C
"	7-247	AA		C
"	7-248	AA		C
"	7-249	AA		C
"	8-91	AA		C
"	8-92	AA		C
"	8-100	AA		C
"	8-104	AA		C
VRS-TS2AD473J	7-243	AA		C
"	7-261	AA		C
VRS-TS2AD474J	7-231	AA		C
VRS-TS2AD512J	7-176	AA		C
	7-266	AA		C
VRS-TS2AD513J	8-86	AA		C
"	8-87	AA		C
VRS-TS2AD562J	7-202	AA		C
VRS-TS2AD563J	8-111	AA		C
VRS-TS2AD621J	8-109	AA		C
VRS-TS2AD680J	7-199	AA		C
VRS-TS2AD683J	8-117	AA		C
VRS-TS2AD822J	8-95	AA		C
VRSTS2AD1183F	7-258	AA		C
VRSTS2AD1742F	7-262	AA		C
VRSTS2AD4752F	7-206	AA		C
VRSTS2AD8662F	7-265	AA		C
"	7-276	AA		C
VSBS108////-1	8-68	AE		B
VSDTD114EK/-1	7-172	AC		B
VSRNC1402//-1	7-170	AC		B
"	7-171	AC		B
"	8-69	AC		B
"	8-71	AC		B
"	8-72	AC		B
"	8-73	AC		B
"	8-74	AC		B
VS2SA1037KS-1	7-169	AB		B
	7-173	AB		B
VS2SC2412KR-1	8-70	AD		B
[X]				
XBBSD30P06000	1-B3	AA		C
XBPSD30P06K00	1-B8	AA		C
XBPSN40P06K00	1-B4	AA		C
XEBSD20P06000	3-B1	AA		C
XEBSD30P08000	1-B7	AA	N	C
XEBSD30P10000	1-B2	AA		C
"	2-B2	AA		C
"	5-B2	AA		C
XHBSD30P05000	1-B5	AA	N	C
[0]				
0CBLRZ6562ZN/	9-31	AQ	N	C
0CBLRZ6581ZN/	9-30	AQ	N	C
OCBPJCEJ1601/	9-24	AH	N	A
	9-25	AH	N	A
0CBPKZ0194ZZ/	9-16	AC		C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	NEW MARK	PART RANK
0CBPZZ0906ZZ/	9-26	AH		A
0CBPZZ0931ZZ/	9-15	AH	N	C
0CBUAC0034EZ	9-36	AE		B
"	9-37	AE		B
OCBUAC0264AZ	9-35	AD		B
0CBUAC0284BK/	9-38	AF	N	B
"	9-39	AF	N	B
OCBUAG0161AC/	9-34	AQ	N	B
OCBUBA0011AL/	9-21	AD	N	B
OCBUBC0125DK/	9-17	AD	N	B
	9-18	AD	N	B
"	9-19	AD	N	B
"	9-20	AD	N	B
OCBUBC0302BZ/	9-23	AE		B
0CBUBC0336AZ/	9-22	AL		B
0CBUBDBE2R0C/	9-65	AD	N	B
0CBUBDBE200D/	9-66	AD	N	B
0CBUBDBE270D/	9-64	AD	N	B
0CBUBDBE6R2C/	9-68	AC		B
0CBUBDBM300D/	9-67	AC		B
0CBUCB0167AZ/	9-27	AR		B
0CBUDC0163CZ/	9-32	AG	N	B
	9-33	AG	N	B
OCBUDC0232AK/	9-61	AF	N	B
0CBUEEB101CT/	9-43	AC		C
OCBUEEB152CT/	9-44	AC	N	C
0CBUEEB223CT/	9-45	AC		C
0CBUEEB242CT/	9-54	AC		C
OCBUEEB330CT/	9-46	AC	N	C
0CBUEEB334CT/	9-51	AC		C
OCBUEEB390CT/	9-50	AC	N	C
0CBUEEB392CT/	9-55	AC		C
0CBUEEB471CT/	9-48	AC		C
OCBUEEB472CT/	9-52	AC		C
	9-56	AC		C
"	9-57	AC		C
OCBUEEB473CT/	9-47	AC	N	C
0CBUEEB682CT/	9-53	AC		C
0CBUEEB824CF/	9-41	AC	N	C
"	9-42	AC	N	C
OCBUEEC272CF/	9-58	AC	N	C
"	9-59	AC	N	C
OCBUEEC335CF/	9-40	AC	N	C
OCBUEFDR33DB/	9-49	AE	N	C
OCBUEZ0507ZZ/	9-62	AD		B
0CBUFBA471DB/	9-63	AD		B
0CBUGAB101RV/	9-13	AF	N	C
0CBUGAE331TS/	9-7	AH	N	C
0CBUGCF104CQ/	9-10	AD	N	C
0CBUGCM332BJ/	9-6	AF	N	C
0CBUGCS101AA/	9-11	AD	N	C
0CBUGFF102BQ/	9-14	AD	N	C
OCBUGFF223JS/	9-5	AC	N	C
OCBUGFF472BQ/	9-4	AC	N	C
OCBUGFF474JA/	9-8	AF	N	C
OCBUGFM104KD/	9-12	AF	N	C
OCBUGFM224KR/	9-1	AF	N	C
OCBUGZ1186ZZ/	9-2	AL	N	C
OCBUGZ1187ZZ/	9-3	AD	N	C
OCBUGZ1188ZZ/	9-9	AK	N	C
OCBUKZ0826ZZ/	9-28	AK		C
0CBUZZ0156ZZ/	9-29	AN	N	C
0CB829585032/	9-60	BE	N	B

MEMO

SHARP

COPYRIGHT © 1999 BY SHARP CORPORATION

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher

[^0]: * Please complete this report before calling the "TAC" hotline if problem still occurs.

